Dent disease is an X-linked renal proximal tubulopathy associated with mutations in the chloride channel gene CLCN5. Lowe syndrome, a multisystem disease characterized by renal tubulopathy, congenital cataracts, and mental retardation, is associated with mutations in the gene OCRL1, which encodes a phosphatidylinositol 4,5-bisphosphate (PIP(2)) 5-phosphatase. Genetic heterogeneity has been suspected in Dent disease, but no other gene for Dent disease has been reported. We studied male probands in 13 families, all of whom met strict criteria for Dent disease but lacked mutations in CLCN5. Linkage analysis in the one large family localized the gene to a candidate region at Xq25-Xq27.1. Sequencing of candidate genes revealed a mutation in the OCRL1 gene. Of the 13 families studied, OCRL1 mutations were found in 5. PIP(2) 5-phosphatase activity was markedly reduced in skin fibroblasts cultured from the probands of these five families, and protein expression, measured by western blotting, was reduced or absent. Slit-lamp examinations performed in childhood or adulthood for all five probands showed normal results. Unlike patients with typical Lowe syndrome, none of these patients had metabolic acidosis. Three of the five probands had mild mental retardation, whereas two had no developmental delay or behavioral disturbance. These findings demonstrate that mutations in OCRL1 can occur with the isolated renal phenotype of Dent disease in patients lacking the cataracts, renal tubular acidosis, and neurological abnormalities that are characteristic of Lowe syndrome. This observation confirms genetic heterogeneity in Dent disease and demonstrates more-extensive phenotypic heterogeneity in Lowe syndrome than was previously appreciated. It establishes that the diagnostic criteria for disorders resulting from mutations in the Lowe syndrome gene OCRL1 need to be revised.
Background and objectives: Lowe syndrome is defined by congenital cataracts, mental retardation, and proximal tubulopathy and is due to mutations in OCRL. Recently, mutations in OCRL were found to underlie some patients with Dent disease, characterized by low molecular weight proteinuria, hypercalciuria, and nephrocalcinosis. This phenotypic heterogeneity is poorly understood.Design, setting, participants, & measurements: The renal phenotype of 16 patients with Lowe syndrome (10.9 ؎ 7.0 yr) under care of the authors was characterized to define overlap of symptoms with Dent disease and infer clues about OCRL function. Medical charts of patients were reviewed for data regarding glomerular filtration rate and markers of proximal tubular function.Results: All patients had low molecular weight proteinuria and albuminuria. Lysosomal enzymuria was elevated in all 11 patients assessed. Fifteen patients had hypercalciuria, and 14 aminoaciduria. Seven patients required bicarbonate and three required phosphate replacement; all others maintained normal serum values without supplementation. None of the patients had detectable glycosuria, and none had clinically overt rickets. GFR was mildly to moderately impaired and highly variable, with a trend of deterioration with age.Conclusions: Patients with Lowe syndrome do not have renal Fanconi syndrome but a selective proximal tubulopathy, variable in extent and dominated by low molecular weight proteinuria and hypercalciuria, the classical features of Dent disease. These findings suggest that OCRL and ClC-5, the chloride channel mutated in Dent disease, are involved in similar reabsorption pathways in the proximal tubule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.