Dent disease is an X-linked renal proximal tubulopathy associated with mutations in the chloride channel gene CLCN5. Lowe syndrome, a multisystem disease characterized by renal tubulopathy, congenital cataracts, and mental retardation, is associated with mutations in the gene OCRL1, which encodes a phosphatidylinositol 4,5-bisphosphate (PIP(2)) 5-phosphatase. Genetic heterogeneity has been suspected in Dent disease, but no other gene for Dent disease has been reported. We studied male probands in 13 families, all of whom met strict criteria for Dent disease but lacked mutations in CLCN5. Linkage analysis in the one large family localized the gene to a candidate region at Xq25-Xq27.1. Sequencing of candidate genes revealed a mutation in the OCRL1 gene. Of the 13 families studied, OCRL1 mutations were found in 5. PIP(2) 5-phosphatase activity was markedly reduced in skin fibroblasts cultured from the probands of these five families, and protein expression, measured by western blotting, was reduced or absent. Slit-lamp examinations performed in childhood or adulthood for all five probands showed normal results. Unlike patients with typical Lowe syndrome, none of these patients had metabolic acidosis. Three of the five probands had mild mental retardation, whereas two had no developmental delay or behavioral disturbance. These findings demonstrate that mutations in OCRL1 can occur with the isolated renal phenotype of Dent disease in patients lacking the cataracts, renal tubular acidosis, and neurological abnormalities that are characteristic of Lowe syndrome. This observation confirms genetic heterogeneity in Dent disease and demonstrates more-extensive phenotypic heterogeneity in Lowe syndrome than was previously appreciated. It establishes that the diagnostic criteria for disorders resulting from mutations in the Lowe syndrome gene OCRL1 need to be revised.
Aberrant protein processing with tissue deposition is associated with many common neurodegenerative disorders; however, the complex interplay of genetic and environmental factors has made it difficult to decipher the sequence of events linking protein aggregation with clinical disease. Substantial progress has been made toward understanding the pathophysiology of prototypical conformational diseases and protein polymerization in the superfamily of serine proteinase inhibitors (serpins). Here we describe a new disease, familial encephalopathy with neuroserpin inclusion bodies, characterized clinically as an autosomal dominantly inherited dementia, histologically by unique neuronal inclusion bodies and biochemically by polymers of the neuron-specific serpin, neuroserpin. We report the cosegregation of point mutations in the neuroserpin gene (PI12) with the disease in two families. The significance of one mutation, S49P, is evident from its homology to a previously described serpin mutations, whereas that of the other, S52R, is predicted by modelling of the serpin template. Our findings provide a molecular mechanism for a familial dementia and imply that inhibitors of protein polymerization may be effective therapies for this disorder and perhaps for other more common neurodegenerative diseases.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene but the association between mutation (genotype) and disease presentation (phenotype) is not straightforward. We have been investigating whether variants in the CFTR gene that alter splicing efficiency of exon 9 can affect the phenotype produced by a mutation. A missense mutation, R117H, which has been observed in three phenotypes, was found to occur on two chromosome backgrounds with intron 8 variants that have profoundly different effects upon splicing efficiency. A close association is shown between chromosome background of the R117H mutation and phenotype. These findings demonstrate that the genetic context in which a mutation occurs can play a significant role in determining the type of illness produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.