SUMMARY We have examined the incidence and size of infarction after occlusion of different portions of the rat middle cerebral artery (MCA) in order to define the reliability and predictability of this model of brain ischemia. We developed a neurologic examination and have correlated changes in neurologic status with the size and location of areas of infarction.The MCA was surgically occluded at different sites in six groups of normal rats. After 24 hr, rats were evaluated for the extent of neurologic deficits and graded as having severe, moderate, or no deficit using a new examination developed for this model. After rats were sacrificed the incidence of infarction was determined at histologic examination. In a subset of rats, the size of the area of infarction was measured as a percent of the area of a standard coronal section.Focal (1-2 nun) occlusion of the MCA at its origin, at the olfactory tract, or lateral to the inferior cerebral vein produced infarction in 13%, 67%, and 0% of rats, respectively (N = 38) and produced variable neurologic deficits. However, more extensive (3 or 6 mm) occlusion of the MCA beginning proximal to the olfactory tract -thus isolating lenticulostriate end-arteries from the proximal and distal supply -produced infarctions of uniform size, location, and with severe neurologic deficit (Grade 2) in 100% of rats (N = 17). Neurologic deficit correlated significantly with the size of the infarcted area (Grade 2, N = 17, 28 ± 5% infarction; Grade 1, N = 5, 19 ± 5%; Grade 0, N = 3, 10 ± 2%; p < 0.05).We have characterized precise anatomical sites of the MCA that when surgically occluded reliably produce uniform cerebral infarction in rats, and have developed a neurologic grading system that can be used to evaluate the effects of cerebral ischemia rapidly and accurately. The model will be useful for experimental assessment of new therapies for irreversible cerebral ischemia. Stroke Vol 17, No 3, 1986 DEVELOPMENT of a reproducible, reliable animal model of cerebral ischemia would allow the study of the pathophysiology of the lesion and the efficacy of various treatment modalities. Characteristics of models are based on similarities with syndromes of human cerebrovascular disease; 1 a review of available models of focal ischemic infarction has been published recently.2 Ideally, experimental occlusion with or without reperfusion is accompanied by predictable changes in blood flow and a consistent degree of infarction that produces lesions of predictable location and size.2 " 4 To insure that the neurologic examination is reliable, animals should be neurologically similar to humans in terms of behavior, sensory-motor integration, and relative amount of neocortex.5 These requirements are best met by occlusion of a single artery in subhuman primates.2 -6 However, primates are costly and difficult to maintain and therefore cannot be used by the majority of investigators who study cerebral ischemia.The laboratory rat is a well-studied, relatively inexpensive, and readily available animal that h...
Parkinson’s disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson’s and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson’s disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson’s disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson’s disease identifies PGC-1α as a potential therapeutic target for early intervention.
SUMMARY We have evaluated the use of 2, 3, 5-triphenyltetrazolium chloride (TTC) as an histopathologic stain for identification of infarcted rat brain tissue. The middle cerebral artery (MCA) of 35 normal adult rats was occluded surgically. At various times after surgical occlusion, rats were sacrificed and brain slices were obtained and stained with TTC or hematoxolin and eosin (H & E); the size of the area of infarcted tissue stained by each method was quantified. In rats sacrificed 24 hr after occlusion of the MCA, the size of the area of infarction was 21 ± 2% of the coronal section for TTC, and 21 ± 2% for H & E (mean ± S.D., N = 13). The size of areas of infarction determined by either staining method was not significantly different in area by the paired t test, and a significant correlation between sizes determined by each method was found by linear regression analysis (r = 0.91, slope = 0.89, and the y intercept = 4.4%). Staining with TTC is a rapid, convenient, inexpensive, and reliable method for the detection and quantification of cerebral infarction in rats 24 hr after the onset of ischemia.
Aberrant protein processing with tissue deposition is associated with many common neurodegenerative disorders; however, the complex interplay of genetic and environmental factors has made it difficult to decipher the sequence of events linking protein aggregation with clinical disease. Substantial progress has been made toward understanding the pathophysiology of prototypical conformational diseases and protein polymerization in the superfamily of serine proteinase inhibitors (serpins). Here we describe a new disease, familial encephalopathy with neuroserpin inclusion bodies, characterized clinically as an autosomal dominantly inherited dementia, histologically by unique neuronal inclusion bodies and biochemically by polymers of the neuron-specific serpin, neuroserpin. We report the cosegregation of point mutations in the neuroserpin gene (PI12) with the disease in two families. The significance of one mutation, S49P, is evident from its homology to a previously described serpin mutations, whereas that of the other, S52R, is predicted by modelling of the serpin template. Our findings provide a molecular mechanism for a familial dementia and imply that inhibitors of protein polymerization may be effective therapies for this disorder and perhaps for other more common neurodegenerative diseases.
In both genetic and idiopathic forms of Parkinson's disease (PD), considerable evidence supports the involvement of alpha-synuclein, electron transport chain complex I, protein aggregation, and the ubiquitin-proteasome system. To investigate alterations in the transcription of genes that comprise these pathways, we performed gene expression profiling and functional gene group analysis of three brain regions (the substantia nigra, putamen, and area 9) in postmortem tissue from matched groups of PD or control subjects (n = 15/group). Verification of selected changes was performed using RT-PCR, and visualization of selected changes in expression was accomplished using in situ hybridization (ISH). Our results provide strong support for the impairment of multiple electron transport chain complexes and the ubiquitin-proteasomal system in PD, along with a robust induction of heat shock proteins and some anti-apoptotic gene groups. Several novel gene and gene group findings were also obtained that offer new insight into the pathogenesis and potential treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.