One highly undesirable characteristic of mature assets that inhibits oil recovery is high water production. Polymer gel treatment is a popular conformance improvement technique applied in this regard due to its cost effectiveness and proved efficiency. Despite this popularity, optimum performance of polymer hydrogels in water shut off is inhibited by excessive aggregation, difficulty in controlling gelation, and their instability at high temperature and high salinity reservoir conditions. To address these shortcomings, research on the application of nanoparticles (NPs) in polymer hydrogels to manage thermal stability and salinity sensitivity has significantly increased in the recent past. By incorporating metal-based NPs, silica or graphene at nanoscale; the gel strength, storage modulus, salinity tolerance and thermal stability of commonly used polymers have been greatly enhanced. In this paper, the advances in experimental studies on polymer-based nanocomposites are discussed and field experiences from adoption of polymer composites reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.