Abstract.Within education, concepts such as distance learning, and open universities, are now becoming more widely used for teaching and learning. However, due to the nature of the subject domain, the teaching of Science, Technology, and Engineering are still relatively behind when using new technological approaches (particularly for online distance learning). The reason for this discrepancy lies in the fact that these fields often require laboratory exercises to provide effective skill acquisition and hands-on experience. Often it is difficult to make these laboratories accessible for online access. Either the real lab needs to be enabled for remote access or it needs to be replicated as a fully software-based virtual lab. We argue for the latter concept since it offers some advantages over remotely controlled real labs, which will be elaborated further in this paper.We are now seeing new emerging technologies that can overcome some of the potential difficulties in this area. These include: computer graphics, augmented reality, computational dynamics, and virtual worlds. This paper summarizes the state of the art in virtual laboratories and virtual worlds in the fields of science, technology, and engineering. The main research activity in these fields is discussed but special emphasis is put on the field of robotics due to the maturity of this area within the virtual-education community. This is not a coincidence; starting from its widely multidisciplinary character, robotics is a perfect example where all the other fields of engineering and physics can contribute. Thus, the use of virtual labs for other scientific and non-robotic engineering uses can be seen to share many of the same learning processes. This can include supporting the introduction of new concepts as part of learning about science and technology, and introducing more general engineering knowledge, through to supporting more constructive (and collaborative) education and training activities in a more complex engineering topic such as robotics. The objective of this paper is to outline this problem space in more detail and to create a valuable source of information that can help to define the starting position for future research.Key words: virtual laboratory, dynamics based virtual reality, virtual world, distance learning for engineering/STEM education, immersive education IntroductionRecently we have seen a number of new ideas appearing in the literature concerned with the future of education and in particular for the teaching of Science, Technology, and Engineering (STE 1 ). Some of these notions are novel while others are a re-imagining of existing ideas but in a new context. Technological examples most relevant for this study are: distance learning, elearning, virtual laboratories, virtual reality and virtual worlds, avatars, dynamics-based virtual systems, and the overall new concept of immersive education that integrates many of these ideas together. Many highly reputable institutions 2 have gathered around this challenging concept, withi...
A version of this paper with color figures is available online at http://dx.doi.org/10.1162/ artl_a_00088. Subscription required.Abstract Anthropomimetic robotics differs from conventional approaches by capitalizing on the replication of the inner structures of the human body, such as muscles, tendons, bones, and joints. Here we present our results of more than three years of research in constructing, simulating, and, most importantly, controlling anthropomimetic robots. We manufactured four physical torsos, each more complex than its predecessor, and developed the tools required to simulate their behavior. Furthermore, six different control approaches, inspired by classical control theory, machine learning, and neuroscience, were developed and evaluated via these simulations or in small-scale setups. While the obtained results are encouraging, we are aware that we have barely exploited the potential of the anthropomimetic design so far. But, with the tools developed, we are confident that this novel approach will contribute to our understanding of morphological computation and human motor control in the future.
One of basic characteristics of the regular bipedal walk of humanoid robots is the maintenance of their dynamic balance during the walk, whereby a decisive role is played by the unpowered degrees of freedom arising at the foot–ground contact. Hence, the role of the Zero-Moment Point (ZMP) as an indicator of dynamic balance is indispensable. This paper gives a detailed discussion of some basic theoretical assumptions related to the ZMP in the light of imprecise, and even incorrect, interpretations that have recently appeared, and which have led to some erroneous conclusions. Examples are given to show some erroneous basic attitudes and the genesis of some of them is indicated. It is also pointed out that in the domain of bipedal walk there are still notions that are not clearly defined and their meanings differentiated in some related branches of science and engineering. One of the examples is dynamic balance and stability, which are often used interchangeably.
This paper proposes a new control strategy for noncompliant and compliant antagonistic tendon drives. It is applied to a succession of increasingly complex single-joint systems, starting with a linear and noncompliant system and ending with a revolute, nonlinearly tendon coupled and compliant system. The last configuration mimics the typical human joint structure, used as a model for certain joints of the anthropomimetic robot ECCEROBOT. The control strategy is based on a biologically inspired puller-follower concept, which distinguishes the roles of the agonist and antagonist motors. One actuator, the puller, is considered as being primarily responsible for the motion, while the follower prevents its tendon from becoming slack by maintaining its tendon force at some non-zero level. Certain movements require switching actuator roles; adaptive co-contraction is used to prevent tendons slackening, while maintaining energetic efficiency. The single-joint control strategy is then evaluated in a multi-joint system. Dealing with the gravitational and dynamic effects arising from the coupling in a multi-joint system, a robust control design has to be applied with on-line gravity compensation. Finally, an experiment corresponding to object grasping is presented to show the controller's robustness to external disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.