Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.
Barnyard millet (Echinochloa species) has become one of the most important minor millet crops in Asia, showing a firm upsurge in world production. The genus Echinochloa comprises of two major species, Echinochloa esculenta and Echinochloa frumentacea, which are predominantly cultivated for human consumption and livestock feed. They are less susceptible to biotic and abiotic stresses. Barnyard millet grain is a good source of protein, carbohydrate, fiber, and, most notably, contains more micronutrients (iron and zinc) than other major cereals. Despite its nutritional and agronomic benefits, barnyard millet has remained an underutilized crop. Over the past decades, very limited attempts have been made to study the features of this crop. Hence, more concerted research efforts are required to characterize germplasm resources, identify trait-specific donors, develop mapping population, and discover QTL/gene (s). The recent release of genome and transcriptome sequences of wild and cultivated Echinochloa species, respectively has facilitated in understanding the genetic architecture and decoding the rapport between genotype and phenotype of micronutrients and agronomic traits in this crop. In this review, we highlight the importance of barnyard millet in the current scenario and discuss the up-to-date status of genetic and genomics research and the research gaps to be worked upon by suggesting directions for future research to make barnyard millet a potential crop in contributing to food and nutritional security.
A short duration high yielding barnyard millet culture ACM 10145 was developed at the Department of Plant Breeding and Genetics, Agricultural College and Research Institute, TNAU, Madurai. The culture inflorescence is pyramidal shape, incurved compact raceme and yield on an average 1700 kg/ha and 2500 kg/ha grain under rain-fed and irrigated condition which was 22 % and 17.6 % improved yield over VL 172 and CO (Kv) 2 respectively.. The grains are yellowish grey, oval and bold in size (1.09 mm) with high iron content (16 mg/100g). The white rice recovery of the milled rice and good taste that well suits the consumer's preferences and acceptance. The culture recorded the quality and average yield of fodder is also better than local check CO (Kv) 2.
Two popular stable restorer lines, CB 87 R and CB 174 R, were improved for blast resistance through marker-assisted back-cross breeding (MABB). The hybrid rice development program in South India extensively depends on these two restorer lines. However, these restorer lines are highly susceptible to blast disease. To improve the restorer lines for resistance against blasts, we introgressed the broad-spectrum dominant gene Pi54 into these elite restorer lines through two independent crosses. Foreground selection for Pi54 was done by using gene-specific functional marker, Pi54 MAS, at each back-cross generation. Back-crossing was continued until BC3 and background analysis with seventy polymorphic SSRs covering all the twelve chromosomes to recover the maximum recurrent parent genome was done. At BC3F2, closely linked gene-specific/SSR markers, DRRM-RF3-10, DRCG-RF4-8, and RM 6100, were used for the identification of fertility restoration genes, Rf3 and Rf4, along with target gene (Pi54), respectively, in the segregating population. Subsequently, at BC3F3, plants, homozygous for the Pi54 and fertility restorer genes (Rf3 and Rf4), were evaluated for blast disease resistance under uniform blast nursery (UBN) and pollen fertility status. Stringent phenotypic selection resulted in the identification of nine near-isogenic lines in CB 87 R × B 95 and thirteen in CB 174 R × B 95 as the promising restorer lines possessing blast disease resistance along with restoration ability. The improved lines also showed significant improvement in agronomic traits compared to the recurrent parents. The improved restorer lines developed through the present study are now being utilized in our hybrid development program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.