This paper presents a predictive mathematical model of high-pressure membrane contactor, with a view to developing a plant-wide model of natural gas sweetening including amine regeneration. We build upon an existing model of high-pressure membrane contactor by Quek et al. [Chem Eng Res Des 132:1005-1019, which uses a combination of 1-d and 2-d mass-balance equations to predict the CO 2 absorption flux and membrane wetting under lean solvent operation. For the first time, quantitative predictions of the CO 2 absorption flux can be made under both lean and semi-lean operations. A 1-d energy balance that accounts for the solvent evaporative losses and the exothermic CO 2 absorption into the amine is solved alongside the mass-balance equations, in order to predict the solvent temperature profile inside the contactor. The evaporative losses of water and amines can be quantified separately, as well as the absorptive losses of light hydrocarbons with the amine solvent. The model's predictive capability is tested against data from a lab-scale module and a pilot-scale module that is operated under industrially relevant conditions at a natural gas processing facility in Malaysia. A close agreement between model predictions and measurements of the CO 2 absorption flux, solvent temperature profile, and hydrocarbon loss is observed for a wide range of gas and solvent flowrates and compositions, thereby validating the modeling assumptions. The contactor model is combined in a plant-wide model of natural gas sweetening in the companion paper, where it is used for process integration and analysis.
This paper presents a model-based assessment of a natural gas sweetening process combining high-pressure membrane contactor with conventional amine regeneration. The analysis builds on a mathematical model of the membrane contactor developed in the companion paper, which is capable of quantitative predictions of the CO 2 and hydrocarbon absorption in the amine solvent and the solvent evaporative losses to the treated gas. The predictive capability of the plant-wide model is tested against data from a pilot plant operated under industrially relevant conditions at a natural gas processing facility in Malaysia, showing a close agreement of the predictions with the CO 2 outlet purity and the energy consumption at various CO 2 loading in the amine solvent. This enables a model-based analysis of various operational decisions on the plant-wide solvent losses and hydrocarbon recovery from the rich amine. A new semi-lean process configuration that replaces the energy-intensive stripper column by a simple flash separator is shown to reduce the overall energy consumption significantly while still meeting sales gas specification. This new configuration forms the basis for the scale-up of a commercial natural gas sweetening process, which shows a high intensification potential in terms of volume footprint and energy duty compared to conventional amine treating plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.