Background: A few studies have investigated the interaction between exposure to road traffic noise, air pollutants, and cardiovascular disease (CVD), but their results were inconsistent. This cross-sectional study investigated whether road traffic noise, particulate matter with dynamic diameter less than 10 μm (PM10) and nitrogen dioxides (NO2) exposure were independently associated with the risk of CVD. Methods: We recruited 663 volunteers who had been living near main roads for more than three years in 2008. Information concerning the subjects’ home addresses was combined with noise measurements at 42 locations and annual average of air pollutants from 2 monitoring stations to estimate individual exposure. Multivariate logistic regression was used to calculate the odds ratio (OR) for diagnosed CVD, adjusting for potential confounders and co-exposure. Results: Only per 5-dBA increase in road traffic noise was significantly associated with elevated risk of CVD (adjusted OR = 2.23, 95% confidence interval (CI) = 1.26–3.93) in the single-exposure models. Such association was aggravated (adjusted OR = 2.96, 95% CI = 1.41–6.23) after adjustment for total traffic and PM10 or NO2 in the two-exposure models. Conclusions: Road traffic noise exposure may be associated with the increasing prevalence of CVD. No synergistic association was observed between co-exposure to noise and air pollutants and the risk of CVD.
Dental composite resins are widely used for fixing teeth; however, the monomers used in dental composite resins have been found to be cytotoxic and genotoxic, namely triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and bisphenol A glycol dimethacrylate (Bis-GMA). In this study, we incubated dental composite resins with human saliva for demonstrating the released monomers and biodegradation products. A simple saliva sample dilution method without purification or derivatization was used for quantification. We found that liquid chromatography coupled with multiple-stage ion trap mass spectrometry (LC-MS(n) ) operated in selected reaction monitoring (SRM) mode was able to separate the three monomers within 10 min. The calibration curves were linear (R² >0.996) over a wide range for each monomer in saliva: TEGDMA, 5-500 ppb; UDMA, 5-100 ppb, and Bis-GMA, 5-700 ppb. Furthermore, several biodegradation products were discovered with data-dependent MS/MS scan techniques. Although TEGMA degradation products have previously been reported, we identified two previously unknown UDMA degradation products. The LC-MS/MS method developed in this study was able to successfully quantify monomers and their principal biodegradation products from dental composite resins in human saliva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.