Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead, biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding of the models and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit researchers who do not have access to similar courses or training at their home institutions. Here, we introduce the “Taming the Beast” (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2.
Pathogen traits, such as the virulence of an infection, can vary significantly between patients. A major challenge is to measure the extent to which genetic differences between infecting strains explain the observed variation of the trait. This is quantified by the trait’s broad-sense heritability, H2. A recent discrepancy between estimates of the heritability of HIV-virulence has opened a debate on the estimators’ accuracy. Here, we show that the discrepancy originates from model limitations and important lifecycle differences between sexually reproducing organisms and transmittable pathogens. In particular, current quantitative genetics methods, such as donor–recipient regression of surveyed serodiscordant couples and the phylogenetic mixed model (PMM), are prone to underestimate H2, because they neglect or do not fit to the loss of resemblance between transmission partners caused by within-host evolution. In a phylogenetic analysis of 8,483 HIV patients from the United Kingdom, we show that the phenotypic correlation between transmission partners decays with the amount of within-host evolution of the virus. We reproduce this pattern in toy-model simulations and show that a phylogenetic Ornstein–Uhlenbeck model (POUMM) outperforms the PMM in capturing this correlation pattern and in quantifying H2. In particular, we show that POUMM outperforms PMM even in simulations without selection—as it captures the mentioned correlation pattern—which has not been appreciated until now. By cross-validating the POUMM estimates with ANOVA on closest phylogenetic pairs, we obtain H2 ≈ 0.2, meaning ∼20% of the variation in HIV-virulence is explained by the virus genome both for European and African data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.