Southern Mendoza, Argentina, is characterised by abundant Pleistocene to Holocene volcanism associated with back-arc magmatism, influenced by the subducting Nazca plate. Age determinations in this volcanic area have been improved during the last 5 years. However, there are some volcanic features especially in the Payunia Volcanic Field (PVF) which suggest fairly recent eruptions and which have not been chronologically determined. Recent studies on the Llancanelo Volcanic Field (LLVF) and PVF have determined volcanic activity mainly using K-Ar and 40Ar/39Ar as well as cosmogenic 3He. However, K-Ar and 40Ar/39Ar fail to produce reliable ages in Holocene basaltic flows. To better constrain the younger volcanic activity in the LLVF and especially in the PVF, surface exposure dating using cosmogenic 3He and 21Ne was applied to five volcanic features. By applying this method, 3He and 21Ne ages ranging from late Pleistocene to mid Holocene were obtained for basalts from the area of Los Volcanes, from the PVF. The youngest age acquired is significant as it supports previous evidence for mid Holocene volcanic activity in the PVF and constitutes the first noble gas cosmogenic surface exposure age obtained from a basaltic bomb. This paper illustrates the advantages of using two nuclides (3He and 21Ne) for cosmic-ray exposure ages in the study of recent volcanic eruptions. The results in the present study indicate that the PVF was active in the last 5 ka.
The Payenia Basaltic Province (PBP) is located 450 km east of the Chile-Peru trench in central west Argentina, behind the Andean arc front, constituting the back-arc. In order to evaluate the influence of the subducting slab as well as the magmatic source of this region, two volcanic fields located at comparable distance to the trench, having abundant basaltic products and similar eruptive timeframes were chosen. The Llancanelo (LLVF) and the Payún Matrú (PMVF) volcanic fields are part of the PBP and exhibit abundant basaltic activity during the Pleistocene. The geochemical data suggest that the LLVF has some arc signatures which have been described as weak as they are not as pronounced as in the Andean arc. The weak arc signature is not derived from slab dehydration as high Th enrichment relative to U cannot be explained by this process. We relate the Th enrichment as well as the lack of large residual garnet signatures, to slab sediments in the source. In the case of the PMVF, no arc signature has been inferred despite being only 30 km south of the LLVF. However the PMVF has a composition similar to that of the local intraplate end member, represented by the Rio Colorado volcanic field. The two volcanic fields, LLVF and PMVF, show indications of lower crustal assimilation as they trend towards the lower continental crust end member in Nb/U vs Ce/Pb and Nb/Yb vs Th/Yb diagrams. The geochemical differences between the LLVF and the PMVF as well as between several volcanic fields are illustrated using spatial distribution maps of geochemical ratios. Using this new approach, the decrease in arc signature can be traced in the back-arc and the higher enrichment in high field strength elements (HFSE) relative to large ion lithophile elements (LILE) in the PMVF compared to the LLVF is explicitly shown. These geospatial maps provide a graphical manner to illustrate the presence of two distinct types of volcanism (OIB-like and arc-like) occurring in the same Quaternary basaltic province.
The Pampas Onduladas flow in southern Mendoza, Argentina, is one of the four longest Quaternary basaltic flows on Earth. Such flows (> 100 km) are relatively rare on Earth as they require special conditions in order to travel long distances and there are no recent analogues. Favourable conditions include: a gentle topographic slope, an insulation process to preserve the melt at high temperature, and a large volume of lava with relatively low viscosity. This study investigates the rheological and geochemical characteristics of the ~ 170 km long Pampas Onduladas flow, assessing conditions that facilitated its exceptional length. The study also reports the first geochronological results for the Pampas Onduladas flow. 40Ar/39Ar step-heating analyses of groundmass reveal an eruption age of 373 ± 10 ka (2σ), making the Pampas Onduladas flow the oldest Quaternary long flow. The methods used to assess the rheological properties include the application of several GIS tools to a digital elevation model (DEM) to determine the length, width, thickness, volume and topographic slope of the flow as well as algorithms to determine its density, viscosity and temperature. The slope of the Pampas Onduladas flow determined from the initial part of the flow on the eastern side of La Carbonilla Fracture to its end point in the province of La Pampa is 0.84% (0.29°), the steepest substrate amongst long Quaternary flows. The rheological properties, such as density viscosity and temperature from the Pampas Onduladas flow are similar to values reported for other long Quaternary flows. However, the minimum volume calculated is relatively low for its length compared with other long Quaternary flows. Therefore, the extension of the Pampas Onduladas flow was probably controlled by a steep slope, combined with an insulating mechanism, which helped in providing optimal conditions for a travel length of almost 170 km.
The Payún Matrú Volcanic Field constitutes part of the continental back-arc in Argentina. This volcanic field has been the focus of several regional investigations; however, geochemical analysis of recent volcanoes (<8>ka) at the scale of an individual volcano has not been conducted. We present a morphological description for the Santa Maria Volcano in addition to results from major and trace element analysis and 238U-230Th-226Ra disequilibria. The trace element evidence suggests that the Santa Maria magmatic source has a composition similar to that of the local intraplate end member (resembling an ocean island basalt-like source), with a slight contribution from subduction-related material. The U-series analyses suggest a high 226Ra excess over 230Th for this volcano, which is not derived from a shallow process such as hydrothermal alteration or upper crustal contamination. Furthermore, intermediate-depth processes such as fractional crystallisation have been inferred for the Santa Maria Volcano, but they are not capable of producing the 226Ra excess measured. The 226Ra excess is explained by deep processes like partial melting of mantle lithologies with some influence from subducted Chilean trench sediments. Due to the short half-life of 226Ra (1600 years), we infer that fast magma ascent rates are required to preserve the high 226Ra excess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.