Morbidly obese subjects may present with abnormal thyroid function tests but the reported data are scarce. Therefore, we studied the thyroid parameters in 144 morbidly obese patients, 110 females and 34 males, to assess the prevalence of hypothyroidism. Eleven percent (11.8%) carried the diagnosis of hypothyroidism and were undergoing levothyroxine (LT4) replacement therapy, 7.7% had newly diagnosed subclinical hypothyroidism, 0.7% had subclinical hyperthyroidism and 7.7% were euthyroid with positive antibodies (anti-thyroid peroxidase antibodies [TPOAb]). From the 144 subjects, we selected a cohort of 78 euthyroid subjects with negative TPOAb, who did not receive LT4 replacement or suppression therapy (the experimental group) and compared them to 77 normal-weight euthyroid subjects, TPOA-negative, matched for age and gender who served as controls. The experimental group had higher serum levels of triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), and thyrotropin (TSH) compared to the control group. Serum TSH concentration was associated with fasting serum insulin levels and insulin resistance but not with serum leptin levels, body mass index (BMI), fat mass, and lean body mass. In conclusion, in morbidly obese individuals, the prevalence of overt and subclinical hypothyroidism was high (19.5%). The morbidly obese subjects have higher levels of T3, FT3, T4, and TSH, probably the result of the reset of their central thyrostat at higher level.
Iodine is an essential element for thyroid hormone synthesis. The thyroid gland has the capacity and holds the machinery to handle the iodine efficiently when the availability of iodine becomes scarce, as well as when iodine is available in excessive quantities. The latter situation is handled by the thyroid by acutely inhibiting the organification of iodine, the so-called acute Wolff-Chaikoff effect, by a mechanism not well understood 52 years after the original description. It is proposed that iodopeptide(s) are formed that temporarily inhibit thyroid peroxidase (TPO) mRNA and protein synthesis and, therefore, thyroglobulin iodinations. The Wolff-Chaikoff effect is an effective means of rejecting the large quantities of iodide and therefore preventing the thyroid from synthesizing large quantities of thyroid hormones. The acute Wolff-Chaikoff effect lasts for few a days and then, through the so-called "escape" phenomenon, the organification of intrathyroidal iodide resumes and the normal synthesis of thyroxine (T4) and triiodothyronine (T3) returns. This is achieved by decreasing the intrathyroidal inorganic iodine concentration by down regulation of the sodium iodine symporter (NIS) and therefore permits the TPO-H202 system to resume normal activity. However, in a few apparently normal individuals, in newborns and fetuses, in some patients with chronic systemic diseases, euthyroid patients with autoimmune thyroiditis, and Graves' disease patients previously treated with radioimmunoassay (RAI), surgery or antithyroid drugs, the escape from the inhibitory effect of large doses of iodides is not achieved and clinical or subclinical hypothyroidism ensues. Iodide-induced hypothyroidism has also been observed in patients with a history of postpartum thyroiditis, in euthyroid patients after a previous episode of subacute thyroiditis, and in patients treated with recombinant interferon-alpha who developed transient thyroid dysfunction during interferon-a treatment. The hypothyroidism is transient and thyroid function returns to normal in 2 to 3 weeks after iodide withdrawal, but transient T4 replacement therapy may be required in some patients. The patients who develop transient iodine-induced hypothyroidism must be followed long term thereafter because many will develop permanent primary hypothyroidism.
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
OBJECTIVEObesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term high-fat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process.RESEARCH DESIGN AND METHODSWild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies.RESULTSNrf2-KO mice were partially protected from HFD-induced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter.CONCLUSIONSThe identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense.
Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet.C57BLJ6 wild type male mice were fed either a standard (SD) or a high-fat diet (HFD) for 5 months. Total RNA was prepared from white adipose tissue and was used for microRNA profiling and qPCR.Twenty-two of the most differentially expressed miRNAs, as identified by the microRNA profiling were validated using qPCR. The results of the present study confirmed previous results. The up-regulation of mmu-miR-222 and the down-regulation of mmu-miR-200b, mmu-miR-200c, mmu-miR-204, mmu-miR-30a*, mmu-miR-193, mmu-miR-378 and mmu-miR-30e* after HFD feeding has also been previously reported. On the other hand, we show for the first time the up-regulation of mmu-miR-342-3p, mmu-miR-142-3p, mmu-miR-142-5p, mmu-miR-21, mmu-miR-146a, mmu-miR-146b, mmu-miR-379 and the down-regulation of mmu-miR-122, mmu-miR-133b, mmu-miR-1, mmu-miR-30a*, mmu-miR-192 and mmu-miR-203 during the development of obesity. However, future studies are warranted in order to understand the exact role that miRNAs play in adipogenesis and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.