Quorum sensing (QS) plays a vital role in regulating the virulence factor of many food borne pathogens, which causes severe public health risk. Therefore, interrupting the QS signaling pathway may be an attractive strategy to combat microbial infections. In the current study QS inhibitory activity of quercetin and its anti-biofilm property was assessed against food-borne pathogens using a bio-sensor strain. In addition in-silico techniques like molecular docking and molecular dynamics simulation studies were applied to screen the quercetin’s potentiality as QS inhibitor. Quercetin (80μg/ml) showed the significant reduction in QS-dependent phenotypes like violacein production, biofilm formation, exopolysaccharide (EPS) production, motility and alginate production in a concentration-dependent manner. Synergistic activity of conventional antibiotics with quercetin enhanced the susceptibility of all tested pathogens. Furthermore, Molecular docking analysis revealed that quercetin binds more rigidly with LasR receptor protein than the signaling compound with docking score of -9.17Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity of quercetin occurs through the conformational changes between the receptor and quercetin complex. Above findings suggest that quercetin can act as a competitive inhibitor for signaling compound towards LasR receptor pathway and can serve as a novel QS-based antibacterial/anti-biofilm drug to manage food-borne pathogens.
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with a median 5-year survival of ~20%. Current U.S. Food and Drug Administration–approved pharmacotherapies slow progression of IPF, providing hope that even more effective treatments can be developed. Alveolar epithelial progenitor type II cell (AEC) apoptosis and proliferation, and accumulation of activated myofibroblasts or fibrotic lung fibroblasts (fLfs) contribute to the progression of IPF. Full-length caveolin-1 scaffolding domain peptide (CSP; amino acids 82 to 101 of Cav1: DGIWKASFTTFTVTKYWFYR) inhibits AEC apoptosis and fLf activation and expansion and attenuates PF in bleomycin (BLM)–induced lung injury in mice. Like full-length CSP, a seven–amino acid deletion fragment of CSP, CSP7 (FTTFTVT), demonstrated antifibrotic effects in murine models of lung fibrosis. When CSP7 was administered during the fibrotic phase in three preclinical models [single-dose BLM, repeated-dose BLM, and adenovirus expressing constitutively active transforming growth factor–β1 (Ad-TGF-β1)–induced established PF], CSP7 reduced extracellular matrix (ECM) markers characteristic of PF, increased AEC survival, and improved lung function. CSP7 is amenable to both systemic (intraperitoneal) or direct lung delivery in a nebulized or dry powder form. Furthermore, CSP7 treatment of end-stage human IPF lung tissue explants attenuated ECM production and promoted AEC survival. Ames testing for mutagenicity and in vitro human peripheral blood lymphocyte and in vivo mouse micronucleus transformation assays indicated that CSP7 is not carcinogenic. Together, these findings support the further development of CSP7 as an antifibrotic treatment for patients with IPF or other interstitial lung diseases.
I. have patents issued for the use of the caveolin-1 spanning domain and its fragments for the treatment of pulmonary fibrosis (869,784,0B2 and 9,630,990); S.I. is an unpaid member of the board of directors and Chief Scientific Officer of Lung Therapeutics, Inc., a University of Texas start-up biotechnology firm that is commercializing caveolin-1 scaffolding domain peptide 7 for the treatment of idiopathic pulmonary fibrosis; S.I. has an equity position in the firm as a founder and investor; S.S. is a consultant for
startup biotechnology firm that is commercializing CSP7 for the treatment of IPF. SS has patents (patent no. 8697840 B2, "Peptide Inhibition of Lung epithelial Apoptosis and Pulmonary Fibrosis" and patent no. 9,630,990, "Inhibition of Pulmonary Fibrosis with Chemical and Peptide Inhibitors") issued for the use of the caveolin-1 scaffolding domain peptide and its fragments for the treatment of lung injury and lung fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.