Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX™), versus similar wear particles made from COVERNOX™ containing UHMWPE (AOX™), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n=10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p<0.001). However, AOX also significantly induced 1.64-fold more new bone formation vs. AltrX (p<0.01). Moreover, while the osteolytic:osteogenic ratio of both particles was very close to 1.0, which is indicative of coupled remodeling, AOX was more osteogenic (Slope=1.13±0.10 vs. 0.97±0.10). Histomorphometry of the metabolically labeled undecalcified calvaria revealed a consistent trend of greater MAR in AOX vs. AltrX. Collectively, these results demonstrate that anti-oxidant impregnated UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling.
Background The oxidative stability of various antioxidant-containing ultrahigh-molecular-weight polyethylene (UHMWPE) formulations has been widely reported. Depending on which specific antioxidant is used, the process by which it is incorporated into UHMWPE, and the amount of the antioxidant incorporated, there could be substantial differences in the material and toxicological properties of the UHMWPE formulation. Pentaerythritol tetrakis (3-[3,5-di tertiary butyl-4-hydroxyphenyl] propionate) (PBHP) has been extensively used as an efficient antioxidant in various applications. However, it has not thus far been used to stabilize UHMWPE in orthopaedic implants. It is therefore important to characterize and verify the concentration and homogeneity of distribution of PBHP in the composition, the chemical consequence of exposure of the antioxidant to gamma irradiation, and to assess the toxicological risk of use by the identification and quantification of leachables before the use of PBHP-containing UHMWPE in implantable devices. Questions/purposes (1) Can the concentration and uniformity of distribution of the antioxidant PBHP in UHMWPE powder and in the consolidated, preirradiated formulation be verified? (2) Can the leachable compounds in the gamma radiation crosslinked PBHP/UHMWPE formulation be identified and quantified? Methods PBHP in GUR 1020 UHMWPE was quantified by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. The chemical byproducts generated by gamma irradiation of PBHP were identified using gas chromatography in conjunction with mass spectrometry followed by a second-stage mass spectrometry (GC-MS/ MS). When GC-MS/MS was coupled with Stir Bar Sorptive extraction, leachable components in the UHMWPE formulation were identified and quantified. Results The percent concentration of PBHP in UHMWPE powder was confirmed by UV-Vis spectroscopy and the concentration and uniform distribution of PBHP in UHMWPE after consolidation and before radiation crosslinking was verified through FTIR spectroscopy. GC-MS/ MS analysis enabled the identification and quantification of 16 gamma irradiation byproducts of PBHP. These 16 compounds were verified as potentially leachable compounds in PBHP-stabilized UHMWPE and were found to be well below the safety threshold concern of 150 ng/ device in orthopaedic knee inserts made from PBHP-stabilized UHMWPE. Conclusions Spectroscopic analysis has been successfully used to demonstrate the ability to reliably quantify the amount as well as the distribution of PBHP in UHMWPE in orthopaedic bearings. State-of-the-art chemical extraction and analytical techniques have enabled the identification of the gamma radiation-induced byproducts of PBHP and the quantification of these components as leachables from the PBHP-stabilized UHMWPE formulation. Clinical Relevance Antioxidant-stabilized UHMWPE materials being considered for orthopaedic bearings must
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.