Pharmaceutical co-crystals have conferred significant recognition in recent past as a new solid form by virtue their capability to modulate physicochemical properties of Active Pharmaceutical Ingredient (API). Nevertheless, pharmaceutical progress of cocrystals could be provocation, the requirement for high-throughput screening methods and the techniques capable of co-crystal production in industrial scale still hamper the co-crystal used by industries. In this review, well ordered overview of pharmaceutical co-crystal is provided, with focus on role of supramolecular chemistry, co-crystal design strategies, preparation methods, physicochemical property studies, mechanism of solubility enhancement, evaluation techniques. In the present commentary, the impact of choosing appropriate process design and formulation on translational challenges has been discussed. Eventually, a short outline of applications and marketed drug products of pharmaceutical co-crystal drug substance is also described.
Background
The meager physicochemical properties like low solubility and low dissolution rate of rosuvastatin calcium remain as an obstruction for formulation development. In the present work, we explore the evolution of rosuvastatin cocrystal, which may offer the synergetic physico-chemical properties of the drug. Cocrystal crafting depends on two possible intermolecular interactions; heteromeric and the homomeric selection of compounds with complementary functional groups are contemplated as a possible cause of supramolecular synthons in cocrystal formation. Specifically, cocrystals of rosuvastatin with l-asparagine and l-glutamine with molar ratio (1:1) were fabricated by using slow solvent evaporation and slow evaporation techniques. Novel cocrystals of rosuvastatin-asparagine (RSC-C) and rosuvastatin-glutamine (RSC-G) cocrystals obtained by slow solvent evaporation were utilized for preliminary investigation and further scale-up was done by using the solvent evaporation technique.
Results
The novel cocrystals showed a new characteristic of powder X-ray diffraction, thermograms of differential scanning calorimetry, 1H liquid FT-NMR spectra, and scanning electron microscopy. These results signify the establishment of intermolecular interaction within the cocrystals. In both the novel cocrystals, rosuvastatin was determined to be engaged in the hydrogen bond interaction with the complementary functional groups of l-asparagine and l-glutamine. Compared with the pure rosuvastatin, RSC-C and RSC-G cocrystal showed 2.17-fold and 1.60-fold improved solubility respectively. The dissolution test showed that the RSC-C and RSC-G cocrystal exhibited 1.97-fold and 1.94-fold higher dissolution rate than the pure rosuvastatin in pH6.8 phosphate buffer respectively.
Conclusion
Modulation in the chemical environment, improvement in the solubility, and dissolution rate demonstrated the benefit of co-crystallization to improve the physicochemical properties of the drug.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.