High-throughput automated fluorescent imaging and screening are important for studying neuronal development, functions, and pathogenesis. An automatic approach of analyzing images acquired in automated fashion, and quantifying dendritic characteristics is critical for making such screens high-throughput. However, automatic and effective algorithms and tools, especially for the images of mature mammalian neurons with complex arbors, have been lacking. Here, we present algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of neuronal network. We employ a divide-and-conquer framework that tackles the challenges of high-throughput images of neurons and enables the integration of multiple automatic algorithms. Within this framework, we developed algorithms that adapt to local properties to detect faint branches. We also developed a path search that can preserve the curvature change to accurately measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for high-throughput screen. Results demonstrate the effectiveness of our proposed method when comparing the accuracy with previous methods. The software has been implemented as an ImageJ plugin and available for use.
Installation of billboards on various structures adjacent to busy roads has become common practice as they provide high economic to the local municipal corporation or private business organisations. Till recent, design of billboards and its installation on a structure was of less importance, but recent large wind cyclones had led to the collapse of billboards and structural cracks. This incident has raised doubts in structural engineering community for the resistance of buildings with billboards during earthquakes. In this study, an existing building with the recent installation of a billboard has considered, and dynamic analysis is carried out for three different ground motions viz. El Centro earthquake, Loma Prieta earthquake and Uttarkashi earthquake for understanding the change in its behaviour with and without billboard. The structure has shown an increment of response due to the installation of a billboard during earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.