Sentiment analysis has been widely researched in the domain of online review sites with the aim of generating summarized opinions of users about different aspects of products. However, there has been little work focusing on identifying the polarity of sentiments expressed by users during disaster events. Identifying such sentiments from online social networking sites can help emergency responders understand the dynamics of the network, e.g., the main users' concerns, panics, and the emotional impacts of interactions among members. In this paper, we perform a sentiment analysis of tweets posted on Twitter during the disastrous Hurricane Sandy and visualize online users' sentiments on a geographical map centered around the hurricane. We show how users' sentiments change according not only to their locations, but also based on the distance from the disaster. In addition, we study how the divergence of sentiments in a tweet posted during the hurricane affects the tweet retweetability. We find that extracting sentiments during a disaster may help emergency responders develop stronger situational awareness of the disaster zone itself.
Twitter is a vital source for obtaining information, especially during events such as natural disasters. Users can spread information on Twitter either by crafting new posts, which are called “tweets,” or by using the retweet mechanism to re-post previously created tweets. During natural disasters, identifying how likely a tweet is to be retweeted is crucial since it can help promote the spread of useful information in a social network such as Twitter, as well as it can help stop the spread of misinformation when corroborated with approaches that identify rumors and misinformation. In this paper, we present an analysis of retweeted tweets from two different hurricane disasters, to identify factors that affect retweetability. We then use these factors to extract features from tweets' content and user account information in order to develop models that automatically predict the retweetability of a tweet. The results of our experiments on Sandy and Patricia Hurricanes show the effectiveness of our features.
Twitter is a vital source for obtaining information, especially during events such as natural disasters. Users can spread information on Twitter either by crafting new posts, which are called “tweets,” or by using the retweet mechanism to re-post previously created tweets. During natural disasters, identifying how likely a tweet is to be retweeted is crucial since it can help promote the spread of useful information in a social network such as Twitter, as well as it can help stop the spread of misinformation when corroborated with approaches that identify rumors and misinformation. In this paper, we present an analysis of retweeted tweets from two different hurricane disasters, to identify factors that affect retweetability. We then use these factors to extract features from tweets' content and user account information in order to develop models that automatically predict the retweetability of a tweet. The results of our experiments on Sandy and Patricia Hurricanes show the effectiveness of our features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.