In this paper, The mobile application field has been receiving astronomical attention from the past few years due to the growing number of mobile app downloads and withal due to the revenues being engendered .With the surge in the number of apps, the number of lamentable apps/failing apps has withal been growing.Interesting mobile app statistics are included in this paper which might avail the developers understand the concerns and merits of mobile apps.The authors have made an effort to integrate all the crucial factors that cause apps to fail which include negligence by the developers, technical issues, inadequate marketing efforts, and high prospects of the users/consumers.The paper provides suggestions to eschew failure of apps. As per the various surveys, the number of lamentable/failing apps is growing enormously, primarily because mobile app developers are not adopting a standard development life cycle for the development of apps. In this paper, we have developed a mobile application with the aid of traditional software development life cycle phases (Requirements, Design, Develop, Test, and, Maintenance) and we have used UML, M-UML, and mobile application development technologies.
In this paper, we discuss security issues for cloud computing, Big data, Map Reduce and Hadoop environment. The main focus is on security issues in cloud computing that are associated with big data. Big data applications are a great benefit to organizations, business, companies and many large scale and small scale industries.We also discuss various possible solutions for the issues in cloud computing security and Hadoop. Cloud computing security is developing at a rapid pace which includes computer security, network security, information security, and data privacy. Cloud computing plays a very vital role in protecting data, applications and the related infrastructure with the help of policies, technologies, controls, and big data tools. Moreover, cloud computing, big data and its applications, advantages are likely to represent the most promising new frontiers in science.
The history of Artificial Intelligence and Machine Learning dates back to 1950’s. In recent years, there has been an increase in popularity for applications that implement AI and ML technology. As with traditional development, software testing is a critical component of an efficient AI/ML application. However, the approach to development methodology used in AI/ML varies significantly from traditional development. Owing to these variations, numerous software testing challenges occur. This paper aims to recognize and to explain some of the biggest challenges that software testers face in dealing with AI/ML applications. For future research, this study has key implications. Each of the challenges outlined in this paper is ideal for further investigation and has great potential to shed light on the way to more productive software testing strategies and methodologies that can be applied to AI/ML applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.