We report a facile microwave-assisted green synthetic route for colloidal poly(vinyl alcohol) (PVA)-coated europium (Eu(3+))-doped luminescent heavy metal bismuth oxyhalide (BiOX; X = Cl, Br, I) nanoflakes at low temperature and examine their structural, optical, and photocatalytic characteristics. PVA coating onto the surface of the nanoflakes endows them with hydrophilic nature. Both Eu(3+)-doped BiOCl and BiOBr nanoflakes exhibit strong optical properties related to Eu(3+) and Bi(3+) which are quenched in case of Eu(3+)-doped BiOI matrix. These results are supported by Eu(3+) photoluminescence lifetime values of 0.61 ms, 0.59 ms, and 8.9 μs, respectively. The former two matrices have quite similar crystal field environments as deduced from the asymmetric ratios of (5)D0 → (7)F2 (614 nm) and (5)D0 → (7)F1 (591 nm) transitions. In addition to possessing interesting photoluminescence properties, a comparison of the photocatalytic activity of Eu(3+)-doped BiOX (X = Cl, Br, I) nanoflakes, with corresponding estimated band gaps of 3.36, 2.74, and 1.67 eV has been evaluated using Rhodamine B (RhB) dye under visible light irradiation. The nanoflakes exhibited 100% dye degradation under visible light irradiation. Eu(3+)-doped BiOCl nanoflakes manifested higher photocatalytic efficiency compared to the other matrices following apparent first-order kinetics. Such a boost in efficiency is attributed to their high surface area to volume ratios, layered crystalline structures, indirect band gap nature, and ability to utilize broad bands in the solar spectrum.
We report a green synthetic approach to the synthesis of water dispersible Ce(3+)/Tb(3+)-doped SrF2 nanocrystals, carried out using environment friendly microwave irradiation with water as solvent. The nanocrystals display strong green emission due to energy transfer from Ce(3+) to Tb(3+) ions. This strong green emission from Tb(3+) ions is selectively quenched upon addition of Cu(2+) ions, thus making the nanocrystals a potential Cu(2+) ions sensing material. There is barely any interference by other metal ions on the detection of Cu(2+) ions and the detection limit is as low as 2 nM. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA) with the recovery of almost 90% of the original luminescence. The luminescence quenching and recovery cycle was repeated multiple times without much effect on the sensitivity. The study was extended to real world water samples and obtained similar results. In addition to the sensing, we strongly predict the small size and high luminescence of the Ce(3+)/Tb(3+)-doped SrF2 nanocrystals can be used for bioimaging applications.
In this Research Article, we report for the first time the use of upconverting nanoparticles to detect melamine up to nanomolar concentration. Detection of melamine is important as it is one of the adulterant in protein rich food products due to its high nitrogen content. In this work, we have shown how the electron deficient 3,5-dinitrobenzoic acid (DNB)-coated Er/Yb-NaYF4 nanocrystals can specifically bind to electron rich melamine and alter the upconverting property of the nanocrystals. This selective binding led to the quenching of the upconversion emission from the nanocrystals. The high selectivity is verified by the addition of various analytes similar in structure with that of melamine. In addition, the selective quenching of the upconversion emission is reversible with the addition of dilute acid. This process has been repeated for more than five cycles with only a slight decrease in the sensing ability. The study was also extended to real milk samples, where the milk adulterated with melamine quenches the emission intensity of the DNB coated NaYF4:Er/Yb nanocrystals, whereas hardly any change is noted for the unadulterated milk sample. The high robustness and the sharp emission peaks make Er(3+)/Yb(3+)-doped NaYF4 nanocrystals a potential melamine sensing material over other organic fluorophores and nanocrystals possessing broad emissions.
We report the enhancement of both visible and near infrared (NIR) emissions from Nd(3+) ions via Ce(3+) sensitization in colloidal nanocrystals for the first time. This is achieved in citrate capped Nd(3+)-doped CeF3 nanocrystals under ultraviolet (UV) irradiation (λex = 282 nm). The lasing transition ((4)F3/2 → (4)I11/2) at 1064 nm from Nd(3+)-doped CeF3 nanocrystals has much higher emission intensity via Ce(3+) ion sensitization compared to the direct excitation of Nd(3+) ions. The nanocrystals were prepared using a simple microwave irradiation route. Moreover, the study has been extended to Sm(3+)-doped CeF3 nanocrystals which show strong characteristic emissions of Sm(3+) ions via energy transfer from Ce(3+) ions. The energy transfer mechanism from Ce(3+) to Nd(3+) and Sm(3+) ions is proposed.
Intense white light emissions are observed from colloidal single component Ce3+/Ce3+/Ce3+/Ce3+-doped CaF2 nanocrystals and their transparent nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.