In this paper, we address the following question: given a specific placement of wireless nodes in physical space and a specific traffic workload, what is the maximum throughput that can be supported by the resulting network? Unlike previous work that has focused on computing asymptotic performance bounds under assumptions of homogeneity or randomness in the network topology and/or workload, we work with any given network and workload specified as inputs.A key issue impacting performance is wireless interference between neighboring nodes. We model such interference using a conflict graph, and present methods for computing upper and lower bounds on the optimal throughput for the given network and workload. To compute these bounds, we assume that packet transmissions at the individual nodes can be finely controlled and carefully scheduled by an omniscient and omnipotent central entity, which is unrealistic. Nevertheless, using ns-2 simulations, we show that the routes derived from our analysis often yield noticeably better throughput than the default shortest path routes even in the presence of uncoordinated packet transmissions and MAC contention. This suggests that there is opportunity for achieving throughput gains by employing an interferenceaware routing protocol.
Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant losses due to bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy systems. In this paper, we compare several schemes designed to improve the performance of TCP in such networks. We classify these schemes into three broad categories: end-to-end protocols, where loss recovery is performed by the sender; link-layer protocols, that provide local reliability; and split-connection protocols, that break the end-to-end connection into two parts at the base station. We present the results of several experiments performed in both LAN and WAN environments, using throughput and goodput as the metrics for comparison.Our results show that a reliable link-layer protocol that is TCP-aware provides very good performance. Furthermore, it is possible to achieve good performance without splitting the end-to-end connection at the base station. We also demonstrate that selective acknowledgments and explicit loss notifications result in significant performance improvements.
Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant losses due to bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy systems. In this paper, we compare several schemes designed to improve the performance of TCP in such networks. We classify these schemes into three broad categories: end-to-end protocols, where loss recovery is performed by the sender; link-layer protocols, that provide local reliability; and split-connection protocols, that break the end-to-end connection into two parts at the base station. We present the results of several experiments performed in both LAN and WAN environments, using throughput and goodput as the metrics for comparison.Our results show that a reliable link-layer protocol that is TCP-aware provides very good performance. Furthermore, it is possible to achieve good performance without splitting the end-to-end connection at the base station. We also demonstrate that selective acknowledgments and explicit loss notifications result in significant performance improvements.
The long-term success of the World Wide Web depends on fast response time. People use the Web to access information from remote sites, but do not like to wait long for their results. The latency of retrieving a Web document depends on several factors such as the network bandwidth, propagation time and the speed of the server and client computers. Although several proposals have been made for reducing this latency, it is difficult to push it to the point where it becomes insignificant.This motivates our work, where we investigate a scheme for reducing the latency perceived by users by predicting and prefetching files that are likely to be requested soon, while the user is browsing through the currently displayed page. In our scheme the server, which gets to see requests from several clients, makes predictions while individual clients initiate prefetching. We evaluate our scheme based on trace-driven simulations of prefetching over both high-bandwidth and low-bandwidth links. Our results indicate that prefetching is quite beneficial in both cases, resulting in a significant reduction in the average access time at the cost of an increase in network traffic by a similar fraction. We expect prefetching to be particularly profitable over non-shared (dialup) links and high-bandwidth, high-latency (satellite) links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.