We use public data from Twitter, both in English and Arabic, to study the phenomenon of secular vs. Islamist polarization in Twitter. Starting with a set of prominent seed Twitter users from both camps, we follow retweeting edges to obtain an extended network of users with inferred political orientation. We present an in-depth description of the members of the two camps, both in terms of behavior on Twitter and in terms of offline characteristics such as gender. Through the identification of partisan users, we compute a valence on the secular vs. Islamist axis for hashtags and use this information both to analyze topical interests and to quantify how polarized society as a whole is at a given point in time. For the last 12 months, large values on this "polarization barometer" coincided with periods of violence. Tweets are furthermore annotated using hand-crafted dictionaries to quantify the usage of (i) religious terms, (ii) derogatory terms referring to other religions, and (ii) references to charitable acts. The combination of all the information allows us to test and quantify a number of stereo-typical hypotheses such as (i) that religiosity and political Islamism are correlated, (ii) that political Islamism and negative views on other religions are linked, (iii) that religiosity goes hand in hand with charitable giving, and (iv) that the followers of the Egyptian Muslim Brotherhood are more tightly connected and expressing themselves "in unison" than the secular opposition. Whereas a lot of existing literature on the Arab Spring and the Egyptian Revolution is largely of qualitative and descriptive nature, our contribution lies in providing a quantitative and datadriven analysis of online communication in this dynamic and politically charged part of the world.
Several projects have shown the feasibility to use textual social media data to track public health concerns, such as temporal influenza patterns or geographical obesity patterns. In this paper, we look at whether geo-tagged images from Instagram also provide a viable data source. Especially for "lifestyle" diseases, such as obesity, drinking or smoking, images of social gatherings could provide information that is not necessarily shared in, say, tweets. In this study, we explore whether (i) tags provided by the users and (ii) annotations obtained via automatic image tagging are indeed valuable for studying public health. We find that both user-provided and machine-generated tags provide information that can be used to infer a county's health statistics. Whereas for most statistics user-provided tags are better features, for predicting excessive drinking machine-generated tags such as "liquid" and "glass" yield better models. This hints at the potential of using machine-generated tags to study substance abuse.
Social media has played an important role in shaping political discourse over the last decade. At the same time, it is often perceived to have increased political polarization, thanks to the scale of discussions and their public nature. In this paper, we try to answer the question of whether political polarization in the US on Twitter has increased over the last eight years. We analyze a large longitudinal Twitter dataset of 679,000 users and look at signs of polarization in their (i) network — how people follow political and media accounts, (ii) tweeting behavior — whether they retweet content from both sides, and (iii) content — how partisan the hashtags they use are. Our analysis shows that online polarization has indeed increased over the past eight years and that, depending on the measure, the relative change is 10% - 20%. Our study is one of very few with such a long-term perspective, encompassing two US presidential elections and two mid-term elections, providing a rare longitudinal analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.