Over the last few decades, hot melt extrusion (HME) has emerged as a successful technology for a broad spectrum of applications in the pharmaceutical industry. As indicated by multiple publications and patents, HME is mainly used for the enhancement of solubility and bioavailability of poorly soluble drugs. This review is focused on the recent reports on the solubility enhancement via HME and provides an update for the manufacturing/scaling up aspects of melt extrusion. In addition, drug characterization methods and dissolution studies are discussed. The application of process analytical technology (PAT) tools and use of HME as a continuous manufacturing process may shorten the drug development process; as a result, the latter is becoming the most widely utilized technique in the pharmaceutical industry. The advantages, disadvantages, and practical applications of various PAT tools such as near and mid-infrared, ultraviolet/visible, fluorescence, and Raman spectroscopies are summarized, and the characteristics of other techniques are briefly discussed. Overall, this review also provides an outline for the currently marketed products and analyzes the strengths, weaknesses, opportunities and threats of HME application in the pharmaceutical industry.
Since the past several decades, poor water solubility of existing and new drugs in the pipeline have remained a challenging issue for the pharmaceutical industry. Literature describes several approaches to improve the overall solubility, dissolution rate, and bioavailability of drugs with poor water solubility. Moreover, the development of amorphous solid dispersion (SD) using suitable polymers and methods have gained considerable importance in the recent past. In the present review, we attempt to discuss the important and industrially scalable thermal strategies for the development of amorphous SD. These include both solvent (spray drying and fluid bed processing) and fusion (hot melt extrusion and KinetiSol®) based techniques. The current review also provides insights into the thermodynamic properties of drugs, their polymer miscibility and solubility, and their molecular dynamics to develop stable and more efficient amorphous SD.
Introduction: Interest in hot melt extrusion (HME) technology for novel applications is growing day by day, which is evident from several hundred publications within the last five years. HME is a cost-effective, solvent free, "green" technology utilized for various formulations with low investment costs compared to conventional technologies. HME has also earned the attention of the pharmaceutical industry by the transformation of this technology for application in continuous manufacturing.Areas covered: Part II of the review focuses on various novel opportunities or innovations of HME such as multiple component systems (co-crystals, co-amorphous systems and salts), twinscrew granulation, semi-solids, co-extrusion, abuse deterrent formulations, solid self-emulsifying drug delivery systems, chronotherapeutic drug delivery systems and miscellaneous applications.Expert opinion: HME is being investigated as an alternative technology for preparation of multi-component systems such as co-crystals and co-amorphous techniques. Twin-screw granulation has gained increased interest in preparation of granules via twin-screw melt granulation or twin-screw dry granulation. This novel application of the HME process provides a promising alternate approach in the formulation of granules and solid dosage forms. However, this technology may need to be further investigated for scalability aspects of these novel applications for industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.