We present a Deep Convolutional Neural Network architecture which serves as a generic image-to-image regressor that can be trained end-to-end without any further machinery. Our proposed architecture: the Recursively Branched Deconvolutional Network (RBDN) develops a cheap multicontext image representation very early on using an efficient recursive branching scheme with extensive parameter sharing and learnable upsampling. This multi-context representation is subjected to a highly non-linear locality preserving transformation by the remainder of our network comprising of a series of convolutions/deconvolutions without any spatial downsampling. The RBDN architecture is fully convolutional and can handle variable sized images during inference. We provide qualitative/quantitative results on 3 diverse tasks: relighting, denoising and colorization and show that our proposed RBDN architecture obtains comparable results to the state-of-the-art on each of these tasks when used off-the-shelf without any post processing or taskspecific architectural modifications.
We propose a linear dimensionality reduction method, Composite Discriminant Factor (CDF) analysis, which searches for a discriminative but compact feature subspace that can be used as input to classifiers that suffer from problems such as multi-collinearity or the curse of dimensionality. The subspace selected by CDF maximizes the performance of the entire classification pipeline, and is chosen from a set of candidate subspaces that are each discriminative. Our method is based on Partial Least Squares (PLS) analysis, and can be viewed as a generalization of the PLS1 algorithm, designed to increase discrimination in classification tasks. We demonstrate our approach on the UCF50 action recognition dataset, two object detection datasets (INRIA pedestrians and vehicles from aerial imagery), and machine learning datasets from the UCI Machine Learning repository. Experimental results show that the proposed approach improves significantly in terms of accuracy over linear SVM, and also over PLS in terms of compactness and efficiency, while maintaining or improving accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.