In the context of big data, a recommendation system has been put forth as an efficient strategy for predicting the consumer's pref-erences while rating items. Organizations that are functioning with multiple branches are in the imperative need for analyzing their multi-source big data to arrive novel decisions with respect to branch level and central level. In such circumstances, a multi-state business organi-zation would like to analyze their consumer preferences and enhance their decision-making activities based on the taste/preferences obtained from diversified data sources located in different places. One of the problems in current Item-based collaborative filtering approach is that users and their ratings have been considered uniformly while recording their preferences about target items. To improve the quality of recommendations, the paper proposes various weighting strategies for arriving effective recommendation of items especially when the sources of data are multi-source in nature. For a multi-source data environment, the proposed strategies would be effective for validating the active user rating for a target item. To validate the novelty of the proposal, a Hadoop based big data eco-system with aid of Mahout has been constructed and experimental investigations are carried out in a benchmark dataset.
In the context of big data, a recommendation system has been put forth as an efficient strategy for predicting the consumer's pref-erences while rating items. Organizations that are functioning with multiple branches are in the imperative need for analyzing their multi-source big data to arrive novel decisions with respect to branch level and central level. In such circumstances, a multi-state business organi-zation would like to analyze their consumer preferences and enhance their decision-making activities based on the taste/preferences obtained from diversified data sources located in different places. One of the problems in current Item-based collaborative filtering approach is that users and their ratings have been considered uniformly while recording their preferences about target items. To improve the quality of recommendations, the paper proposes various weighting strategies for arriving effective recommendation of items especially when the sources of data are multi-source in nature. For a multi-source data environment, the proposed strategies would be effective for validating the active user rating for a target item. To validate the novelty of the proposal, a Hadoop based big data eco-system with aid of Mahout has been constructed and experimental investigations are carried out in a benchmark dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.