In this paper, we demonstrate the significance of restoring harmonics of the fundamental frequency (pitch) in deep neural network (DNN) based speech enhancement. We propose a sliding-window attention network to regress the spectral magnitude mask (SMM) from the noisy speech signal. Even though the network parameters can be estimated by minimizing the mask loss, it does not restore the pitch harmonics, especially at higher frequencies. In this paper, we propose to restore the pitch harmonics in the spectral domain by minimizing cepstral loss around the pitch peak. The network parameters are estimated using a combination of the mask loss and cepstral loss. The proposed network architecture functions like an adaptive comb filter on voiced segments, and emphasizes the pitch harmonics in the speech spectrum. The proposed approach achieves comparable performance with the state-of-the-art methods with much lesser computational complexity 1 . Index Terms-Spectral magnitude mask, transformer, pitch harmonics, cepstral pitch peak and production-related loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.