The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems.
Internet of Things (IoT) is expected to vastly increase the number of connected devices. As a result, a multitude of IoT devices transmit various information through wireless communication technology, such as the Wi-Fi technology, cellular mobile communication technology, low-power wide-area network (LPWAN) technology. However, even the latest Wi-Fi technology is still ready to accommodate these large amounts of data. Accurately setting the contention window (CW) value significantly affects the efficiency of the Wi-Fi network. Unfortunately, the standard collision resolution used by IEEE 802.11ax networks is nonscalable; thus, it cannot maintain stable throughput for an increasing number of stations, even when Wi-Fi 6 has been designed to improve performance in dense scenarios. To this end, we propose a CW control strategy for Wi-Fi 6 systems. This strategy leverages deep learning to search for optimal configuration of CW under different network conditions. Our deep neural network is trained by data generated from a Wi-Fi 6 simulation system with some varying key parameters, e.g., the number of nodes, short interframe space (SIFS), distributed interframe space (DIFS), and data transmission rate. Numerical results demonstrated that our deep learning scheme could always find the optimal CW adjustment multiple by adaptively perceiving the channel competition status. The finalized performance of our model has been significantly improved in terms of system throughput, average transmission delay, and packet retransmission rate. This makes Wi-Fi 6 better adapted to the access of a large number of IoT devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.