Purpose
The main purpose of this paper is to propose a quasi-impedance source (QIS) converter fed switched reluctance motor (SRM) drive. The proposed converter topology is configured for DC link capacitance minimization and power factor (PF) correction.
Design/methodology/approach
A QIS converter is used as a front end converter to reduce the bulk capacitance requirement during current commutation and to decline the power ripple. To improve the PF with reduced total harmonic distortion at the input current, the PF current control loop is merged with the QIS converter control loop.
Findings
The overall SRM drive speed is regulated over a wide range by controlling the DC link voltage. The voltage regulation can be achieved by pulse width modulation of the QIS converter. Hence, the overall system efficiency has been improved by operating the proposed converter at a low switching frequency. Moreover, the proposed QIS converter uses an advanced repetitive controller to achieve voltage regulation and fewer ripples in torque.
Originality/value
The steady state and dynamic analyzes have been performed on the proposed drive topology. The performance of the proposed topology has been simulated through MATLAB/Simulink environment. A hardware prototype with a processor of Xilinx SPARTAN 6 field-programmable gate array has been used to validate the experimental response with the simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.