Identification of cellular factors involved in HIV-1 entry and transmission at mucosal surfaces is critical for understanding viral pathogenesis and development of effective prevention strategies. Here we describe the evaluation of HIV-1 entry inhibitors for their ability to prevent infection of, and dissemination from, human cervical tissue ex vivo. Blockade of CD4 alone or CCR5 and CXCR4 together inhibited localized mucosal infection. However, simultaneous blockade of CD4 and mannose-binding C-type lectin receptors including dendritic cell–specific intercellular adhesion molecule–grabbing integrin was required to inhibit HIV-1 uptake and dissemination by migratory cells. In contrast, direct targeting of HIV-1 by neutralizing mAb b12 and CD4-IgG2 (PRO-542) blocked both localized infection and viral dissemination pathways. Flow cytometric analysis and immunostaining of migratory cells revealed two major populations, CD3+HLA-DR− and CD3−HLA-DR+ cells, with a significant proportion of the latter also expressing dendritic cell–specific intercellular adhesion molecule–grabbing integrin. Bead depletion studies demonstrated that such HLA-DR+ cells accounted for as much as 90% of HIV-1 dissemination. Additional studies using immature monocyte-derived dendritic cells demonstrated that although mannose-binding C-type lectin receptors and CD4 are the principal receptors for gp120, other mechanisms may account for virus capture. Our identification of the predominant receptors involved in HIV-1 infection and dissemination within human cervical tissue highlight important targets for microbicide development.
Human immunodeficiency virus (HIV) is taken up by and replicates in immature dendritic cells (imDCs),
While mucosal responses are important for preventing infections with HIV, the optimal strategies for inducing them remain unclear. To evaluate vaccine strategies targeting the oral mucosal lymphoid tissue inductive sites as an approach to provide immunity at distal sites, we vaccinated healthy macaques via the palatine/lingual tonsils with aldrithiol 2 (AT-2) inactivated SIVmac239, combined with CpG-C immunostimulatory oligonucleotide (CpG-C ISS-ODN , C274) as the adjuvant. Macaques received 5 doses of C274 or control ODN C661 and AT-2 SIV on the tonsillar tissues every 6 weeks before being challenged rectally with SIVmac239, 8 weeks after the last immunization. Although no T or B cell responses were detected in the blood prior to challenge, Ab responses were detected in the rectum . Immunization with AT-2 SIV significantly reduced the frequency of infection compared to non-immunized controls, irrespective of adjuvant. In the vaccinated animals that became infected, peak viremias were somewhat reduced. SIV-specific responses were detected in the blood once animals became infected with no detectable differences between the differently immunized groups and the controls. This work provides evidence that vaccine immunogens applied to the oral mucosal-associated lymphoid tissues can provide benefit against rectal challenge, a finding with important implications for mucosal vaccination strategies.
Cytosine-phosphate-guanine class C (CpG-C) immunostimulatory sequence oligodeoxynucleotides (ISS-ODNs) activate human B cells and dendritic cells (DCs), properties that suggest potential use as a novel adjuvant to enhance vaccine efficacy. After demonstrating that the CpG-C ISS-ODN C274 activates macaque DCs, we examined in vitro activation of macaque B cells by C274 as a prelude to evaluation of this molecule as an adjuvant in the testing of candidate human immunodeficiency virus vaccines in the rhesus macaque-simian immunodeficiency virus (SIV) model. C274 induced macaque CD20(+) B cells to proliferate more strongly than CD40 ligand or CpG-B ISS-ODN. C274 enhanced B cell survival; increased viability was most evident after 3-7 days of culture. Increased expression of CD40, CD80, and CD86 by B cells was apparent within 24 h of exposure to C274 and persisted for up to 1 week. C274-stimulated, B cell-enriched and peripheral blood mononuclear cell suspensions from naïve and immunodeficiency virus-infected monkeys secreted several cytokines [e.g., interleukin (IL)-3, IL-6, IL-12, interferon-alpha] and chemokines [e.g., monocyte chemoattractant protein-1/CC chemokine ligand 2 (CCL2), macrophage-inflammatory protein-1alpha/CCL3, IL-8/CXC chemokine ligand 8]. In comparison, exposure of macaque B cells to SIV had minimal impact on surface phenotype, despite inducing cytokine and chemokine production in cells from infected and uninfected animals. These observations emphasize the need to identify strategies to optimally boost immune function, as immunodeficiency viruses themselves only partially activate B cells and DCs. The ability of C274 to stimulate B cells and DCs in healthy and infected monkeys suggests its possible use as a broad-acting adjuvant to be applied in the rhesus macaque model for the development of preventative and therapeutic vaccines.
Dendritic cells (DCs) are central to the innate and adaptive responses needed to control pathogens, yet HIV exploits DCs to promote infection. The influence of other pathogens on DC-HIV interplay has not been extensively studied. We used Candida albicans (Candida) as a model pathogen which elicits innate DC responses that are likely important in controlling Candida by healthy immune systems. HIV did not impede Candida-specific DC activation. Candida-induced CD80 and CD83 upregulation was greater in DCs that had captured HIV, coinciding with increased amplification in presence of T cells and reduced but persistent low-level DC infection. In contrast, HIV-infected DCs matured normally in response to Candida, but this did not shut down HIV replication in DCs, and again Candida augmented HIV amplification in DC-T-cell mixtures. HIV-infected DCs secreted more IL-10 and IL-1beta earlier than uninfected DCs and initially induced a higher frequency of CD4CD25FoxP3 T-regulatory cells in response to Candida. Elevated early IL-10 production in cocultures was evident only when azidothymidine (AZT) was included to limit T-regulatory cell infection and destruction. Therefore, HIV manipulates the DC's innate and adaptive responses to Candida to further augment HIV spread, ultimately destroying the cells needed to limit candidiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.