The longitudinal assessment of joint health is a long-standing issue in the management of musculoskeletal injuries. The acoustic emissions (AEs) produced by joint articulation could serve as a biomarker for joint health assessment, but their use has been limited by a lack of mechanistic understanding of their creation. In this paper, we investigate that mechanism using an injury model in human lower-limb cadavers, and relate AEs to joint kinematics. Using our custom joint sound recording system, we recorded the AEs from 9 cadaver legs in four stages: at baseline, after a sham surgery, after a meniscus tear, and post-meniscectomy. We compare the resulting AEs using their b-values. We then compare joint anatomy/kinematics to the AEs using the x-ray reconstruction of moving morphology (XROMM) technique. After the meniscus tear the number and amplitude of the AE peaks greatly increased from baseline and sham (b-value =1.33±0.15; p<0.05). The XROMM analysis showed a close correlation between the minimal inter-joint distances (0.251±0.082 cm during extension, 0.265±.003 during flexion, at 145°) and a large increase in the AEs. This work provides key insight into the nature of joint AEs, and details a novel technique and analysis for recording and interpreting these biosignals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.