Summary The protein α-synuclein accumulates in the brain of patients with sporadic Parkinson’s disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. α-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now find that the modest over-expression of α-synuclein, in the range predicted for gene multiplication and in the absence of overt toxicity, markedly inhibits neurotransmitter release. The mechanism, elucidated by direct imaging of the synaptic vesicle cycle, involves a specific reduction in size of the synaptic vesicle recycling pool. Ultrastructural analysis demonstrates reduced synaptic vesicle density at the active zone, and imaging further reveals a defect in the reclustering of synaptic vesicles after endocytosis. Increased levels of α-synuclein thus produce a specific, physiological defect in synaptic vesicle recycling that precedes detectable neuropathology.
The protein ␣-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of ␣-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by ␣-than -or ␥-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. ␣-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease.Many observations have implicated mitochondria in the pathogenesis of PD.2 Mitochondria from the substantia nigra of affected patients show a selective reduction in the activity of respiratory chain complex I (1). Somatic mutations also accumulate with age and PD in the mitochondrial DNA of substantia nigra neurons (2). In addition, the neurotoxins MPTP and rotenone, which produce models of PD, both act by disrupting mitochondrial function. Genetic evidence further supports a primary role for mitochondria in the pathogenesis of PD. Mutations in parkin and the mitochondrial kinase PINK1 both cause autosomal recessive PD (3), and these genes appear required for the normal clearance of defective mitochondria by autophagy (4). However, the molecular mechanisms responsible for mitochondrial dysfunction in the much more common sporadic forms of PD have remained unclear. Several observations suggest a central role for the protein ␣-synuclein in the pathogenesis of sporadic PD. Point mutations in synuclein produce a rare autosomal dominant form of PD (5-7), indicating a causative role for the protein. ␣-Synuclein also accumulates in the Lewy bodies and dystrophic neurites of essentially all patients with idiopathic PD (8), implicating the protein in sporadic as well as familial forms of the disease. Furthermore, duplication and particularly triplication of the SNCA (␣-synuclein) gene cause a severe, highly penetrant form of PD (9, 10), indicating a dose-dependent pathogenic role for the wild type protein when overexpressed and suggesting that the accumulation of synuclein in sporadic PD is the primary pathogenic event. However, the mechanism by which ␣-synuclein causes PD remains poorly understood. Expressed in yeast and Drosophila, human ␣-synuclein produces severe toxicity (11-14), but these model organisms lack endogenous synuclein, and the overexpression of wild type synuclein in mammalian systems causes remarkably little if any consistent toxicity (15-18).Althou...
␣-Synuclein (␣-syn), a protein implicated in Parkinson's disease pathogenesis, is a presynaptic protein suggested to regulate transmitter release. We explored how ␣-syn overexpression in PC12 and chromaffin cells, which exhibit low endogenous ␣-syn levels relative to neurons, affects catecholamine release. Overexpression of wild-type or A30P mutant ␣-syn in PC12 cell lines inhibited evoked catecholamine release without altering calcium threshold or cooperativity of release. Electron micrographs revealed that vesicular pools were not reduced but that, on the contrary, a marked accumulation of morphologically "docked" vesicles was apparent in the ␣-synoverexpressing lines. We used amperometric recordings from chromaffin cells derived from mice that overexpress A30P or wild-type (WT) ␣-syn, as well as chromaffin cells from control and ␣-syn null mice, to determine whether the filling of vesicles with the transmitter was altered. The quantal size and shape characteristics of amperometric events were identical for all mouse lines, suggesting that overexpression of WT or mutant ␣-syn did not affect vesicular transmitter accumulation or the kinetics of vesicle fusion. The frequency and number of exocytotic events per stimulus, however, was lower for both WT and A30P ␣-syn-overexpressing cells. The ␣-synoverexpressing cells exhibited reduced depression of evoked release in response to repeated stimuli, consistent with a smaller population of readily releasable vesicles. We conclude that ␣-syn overexpression inhibits a vesicle "priming" step, after secretory vesicle trafficking to "docking" sites but before calcium-dependent vesicle membrane fusion.
The presynaptic protein ␣-synuclein has a central role in Parkinson's disease (PD). However, the mechanism by which the protein contributes to neurodegeneration and its normal function remain unknown. ␣-Synuclein localizes to the nerve terminal and interacts with artificial membranes in vitro but binds weakly to native brain membranes. To characterize the membrane association of ␣-synuclein in living neurons, we used fluorescence recovery after photobleaching. Despite its enrichment at the synapse, ␣-synuclein is highly mobile, with rapid exchange between adjacent synapses. In addition, we find that ␣-synuclein disperses from the nerve terminal in response to neural activity. Dispersion depends on exocytosis, but unlike other synaptic vesicle proteins, ␣-synuclein dissociates from the synaptic vesicle membrane after fusion. Furthermore, the dispersion of ␣-synuclein is graded with respect to stimulus intensity. Neural activity thus controls the normal function of ␣-synuclein at the nerve terminal and may influence its role in PD.
The aggregation of abnormally folded proteins is a defining feature of neurodegenerative disease, but it has not previously been possible to assess the conformation of these proteins in a physiologically relevant context, before they form morphologically recognizable aggregates. We now describe FRET-based reporters for the conformation of ␣-synuclein, a protein central to the pathogenesis of Parkinson's disease (PD). Characterization in vitro shows that ␣-synuclein adopts a relatively "closed" conformation in solution that converts to "open" on membrane binding. In living cells, the closed conformation predominates. In neurons, however, cell bodies contain a much larger proportion of the open conformation than synaptic boutons. To account for these differences, we also used the reporters to characterize the interaction with native membranes. We find that the conformation of ␣-synuclein responds selectively to mitochondria, indicating a direct link between ␣-synuclein and an organelle strongly implicated in the pathogenesis of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.