Top‐down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top‐down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front‐end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top‐down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top‐down proteomics. We comprehensively discuss the evolution of front‐end workflows that today facilitate optimal characterization of proteoform‐driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Conventional solvent-based precipitation makes it challenging to obtain a high recovery of low mass peptides. However, we previously demonstrated that the inclusion of salt ions, specifically ZnSO4, together with high concentrations of acetone, maximizes the recovery of peptides generated from trypsin digestion. We herein generalized this protocol to the rapid (5 min) precipitation of pepsin-digested peptides recovered from acidic matrices. The precipitation protocol extended to other organic solvents (acetonitrile), with high recovery from dilute peptide samples permitting preconcentration and purification. Mass spectrometry profiling of pepsin-generated peptides demonstrated that the protocol captured peptides as small as 800 u, although with a preferential bias towards recovering larger and more hydrophobic peptides. The precipitation protocol was applied to rapidly quench, concentrate, and purify pepsin-digested samples ahead of MS. Complex mixtures of yeast and plasma proteome extracts were successfully precipitated following digestion, with over 95% of MS-identified peptides observed in the pellet fraction. The full precipitation workflow—including the digestion step—can be completed in under 10 min, with direct MS analysis of the recovered peptide pellets showing exceptional protein sequence coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.