The electrical conductivity of the solutions depends on the nature of the solute and solvent. For a solvent, the main parameter is the dielectric constant. Since the dielectric constant of alcohols is much less than the dielectric constant of water, the electrical conductivity of alcoholic solutions of salts is less than the electrical conductivity of their aqueous solutions. Therefore, alcoholic solutions of inorganic salts are weak electrolytes. We previously studied the electrical conductivity of inorganic salts in a number of alcohols (ethanol, propanol-2 and butanol-1) at room temperature. It is of interest to study the effect of temperature on the electrical conductivity of salts in alcohols. Obviously, an increase of temperature salt solutions leads to an increase in their electrical conductivity. To study the temperature dependence of the electrical conductivity of aqueous solutions electrolytes, we proposed an approach based on the study of the effect of temperature on the equivalent electrical conductivity of solutions at infinite dilution λ∞. Using this approach, we studied the electrical conductivity of aqueous solutions of a number of inorganic salts, carboxylic acids, and amino acids as a function of temperature. It has been established that for these solutions the dependence λ∞(Т) is described by the exponential Arrhenius equation λ∞ = Аexp(-E/(RT)). However, such studies have not been conducted for alcoholic salt solutions. In this regard, this article explores the possibility of describing the experimental data λ∞(Т) for solutions of certain inorganic salts in ethanol by this equation. It is shown that the Arrhenius equation with the found activation energies adequately describes the temperature dependence of the ultimate equivalent conductivity for solutions of a number of inorganic salts (chloride and calcium nitrate, cadmium iodide, lithium and potassium chloride, chloride, iodide and ammonium nitrate, silver nitrate and sodium bromide) in ethyl alcohol.
Electrical conductivity of solutions depends on the nature of the solute and solvent. It is associated with the mobility of ions that are formed during the dissociation of substances in the corresponding solvents. In solvents with large dielectric constant values, substances dissociate into their constituent ions to a greater degree. The dielectric constant of water at room temperature is 78.25. It is a universal solvent and most salts dissolve in it with the decomposition into ions. In proton solvents containing mobile hydrogen ions, salts also dissolve with dissociation into ions. Such solvents include alcohols, the dielectric constant of which is significantly less than the dielectric constant of water. To describe the electrical conductivity of salt solutions in solvents with small dielectric constant, it is proposed to use the Pisarzhevsky-Valden equation in literature. This equation assumes that solvents have a similar chemical nature and the mechanism of salt ion solvation by molecules of different solvents is the same. The degree of solvation changes significantly from one solvent to another for salts containing small ions. This is due to the different solvation of ions in different solvents. Therefore, for such solutions, Pisarzhevsky-Valden equation should not be satisfied. To account for the mechanism of ion solvation in different solvents, A.M. Shkodin proposed an equation that takes into account the dielectric constant of solvent. In this regard the possibility of describing the equivalent conductivity of alcohol solutions of salts with infinite dilution by the equations of Pisarzewski-Valden and Shkodin has been studied in this article. Electrical conductivity of the studied solutions was judged by the specific χ and equivalent to λ electrical conductivities. These two conductivities are related by the equation λ = χ/С, where С is the solution concentration. In this article, for salt solutions of with different concentrations in a certain alcohol, the values of χ and λ were found. By analyzing the dependences 1/λ = f(λС), the values of the limiting equivalent conductivity (λ∞) were found at C = 0. For solutions of each salt in different alcohols, the possibility of describing the obtained values of λ∞ by the Pisarzhevsky-Valden (λ∞· = const) and Shkodin (λ∞· = А·exp(-B/D), where and D are viscosity and the dielectric constant of alcohol; A, B = const). It was found that the experimental data obtained for solutions of sodium iodite and chlorides of cobalt, iron (3), lithium, calcium, nickel, copper, zinc in alcohols (ethanol, propanol-2 and batanol-1) are better described by the Shkodin equation.
Earlier, we studied the electrical conductivity of inorganic salts in a number of alcohols (ethanol, propanol-2, and butanol-1) at room temperature and found that alcoholic solutions of inorganic salts are weak electrolytes. It is known that an increase in the temperature of salt solutions leads to an increase in electrical conductivity due to an increase in the mobility of their ions in the solvent medium. To study the temperature dependence of the electrical conductivity of aqueous solutions of electrolytes, we proposed an approach based on the study of the effect of temperature on the equivalent electrical conductivity of solutions at infinite dilution λ∞. Using this approach, we studied the electrical conductivity of aqueous solutions of a number inorganic salts (nitrates, acetates, and phosphates), carboxylic acids, and amino acids as a function of temperature. It was found that for these solutions the dependence λ∞(Т) is described by the exponential Arrhenius equation λ∞ = Аexp(-E/(RT)). This equation was used to describe the temperature dependence of the ultimate equivalent conductivity for solutions of a number of inorganic salts (calcium and nitrate calcium, cadmium, lithium and potassium iodides, chloride, iodide and ammonium nitrate, silver nitrate and sodium bromide) in ethanol. This article investigated and demonstrated the possibility of describing the experimental data λ∞(Т) for solutions of ethylates, propylates and isopropylates of sodium and potassium in the corresponding alcohols (ethylates in ethanol, propylates in propanol, isopropylates in isopropyl alcohol) using the same equation.
It is well-known fact that water is a universal solvent due to its physicochemical properties and dielectric constant. Therefore, the majority of substances with a crystalline structure and the structure close to it are well soluble in water due to the dissociation of molecules into ions. Amino acids are organic ampholytes – substances capable of being in ionic forms in water. The quantitative and qualitative composition of ampholytes depends on the structure and composition of amino acids and pH of solution. The interaction of amino acid ions in solution with hydrogen ions and hydroxyl leads to the formation of complex cations and anions. The presence of amino and carboxyl groups in amino acid molecules contributes to the formation of inter-ion positively and negatively charged complexes which leads to the decrease in their mobility and electrical conductivity of solutions. It is observed with increasing concentration of amino acid solutions. The conductivity of amino acid solutions is also influenced by temperature which has a non-linear relationship. We have proposed the approach based on studying the effect of temperature on the equivalent electrical conductivity at infinite dilution λ∞ and describing the experimental data λ∞(Т) by the exponential Arrhenius equation. This article studies the possibility of describing the experimental data λ∞(Т) for aqueous solutions of a number of amino acids by this equation. It is shown that the Arrhenius equation with the found activation energy values adequately describes the dependences of limiting equivalent conductivity on temperature for aqueous solutions of valine, leucine, isoleucine, threonine, lysine, methionine, phenylalanine, L-aspartic and D-aspartic acids, histidine, arginine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.