The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10–15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes’ transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells’ responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor.
Ionizing radiation and radiation-related oxidative stress are two important factors responsible for the death of actively proliferating cells, thus drastically reducing the regeneration capacity of living organisms. Planarian flatworms are freshwater invertebrates that are rich in stem cells called neoblasts and, therefore, present a well-established model for studies on regeneration and the testing of novel antioxidant and radioprotective substances. In this work, we tested an antiviral and antioxidant drug Tameron (Monosodium α-Luminol or 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt) for its ability to reduce the harm of X-ray- and chemically induced oxidative stress on a planarian model. Our study has revealed the ability of Tameron to effectively protect planarians from oxidative stress while enhancing their regenerative capacity by modulating the expression of neoblast marker genes and NRF-2-controlled oxidative stress response genes.
Nanotechnology makes it possible to design advanced materials being able to effectively modulate radiation effects on a cell, depending on the radiation intensity, wavelength, and type. Today, one of the most promising UV and X-ray protective biomaterials is nanocrystalline cerium oxide (CeO 2 ), which has a unique redox activity due to its surface reducibility. Meanwhile, the modulating properties of CeO 2 nanoparticles when the cells are exposed to visible light remain completely unexplored. Here, we analyzed the impact of CeO 2 nanoparticles on the process of planarian regeneration after exposure to low-intensity green LED light. It was found that a one-time exposure (10 or 25 min) of regenerating planarians with low-intensity green light reduced head blastema growth rate by up to 20%. At the same time, the preliminary treatment of planaria with CeO 2 nanoparticles in nanomolar concentrations (10 −11 M) ensures the restoration of the neoblasts activity and a significant acceleration of blastema regeneration. Thus, we have firstly demonstrated that the planarian regeneration process can be promoted by cerium oxide nanoparticles even under adverse action of low-intensity green light radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.