A hallmark of the NF-B transcription response to inflammatory cytokines is the remarkably rapid rate of robust activation and subsequent signal repression. Although the rapidity of postinduction repression is explained partly by the fact that the gene for I B␣ is strongly induced by NF-B, the newly synthesized I B␣ still must enter the nucleus and compete for binding to NF-B with the very large number of B sites in the DNA. We present results from real-time binding kinetic experiments, demonstrating that I B␣ increases the dissociation rate of NF-B from the DNA in a highly efficient kinetic process. Analysis of various I B mutant proteins shows that this process requires the C-terminal PEST sequence and the weakly folded fifth and sixth ankyrin repeats of I B␣. Mutational stabilization of these repeats reduces the efficiency with which I B␣ enhances the dissociation rate.binding kinetics ͉ disordered proteins ͉ protein-DNA interaction ͉ transcription ͉ surface plasmon resonance
Type I cyclic guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) is involved in the nitric oxide/cGMP signaling pathway. PKG has been identified in many different species, ranging from unicelölular organisms to mammals. The enzyme serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses, ranging from smooth-muscle relaxation to neuronal synaptic plasticity. In the absence of a crystal structure, the three-dimensional structure of the homodimeric 152-kDa kinase PKG is unknown; however, there is evidence that the kinase adopts a distinct cGMP-dependent active conformation when compared to the inactive conformation. We performed mass-spectrometry-based hydrogen/deuterium exchange experiments to obtain detailed information on the structural changes in PKG I alpha induced by cGMP activation. Site-specific exchange measurements confirmed that the autoinhibitory domain and the hinge region become more solvent exposed, whereas the cGMP-binding domains become more protected in holo-PKG (dimeric PKG saturated with four cGMP molecules bound). More surprisingly, our data revealed a specific disclosure of the substrate-binding region of holo-PKG, shedding new light into the kinase-activation process of PKG.
The structure of AcP from the hyperthermophilic archaeon Sulfolobus solfataricus has been determined by (1)H-NMR spectroscopy and X-ray crystallography. Solution and crystal structures (1.27 A resolution, R-factor 13.7%) were obtained on the full-length protein and on an N-truncated form lacking the first 12 residues, respectively. The overall Sso AcP fold, starting at residue 13, displays the same betaalphabetabetaalphabeta topology previously described for other members of the AcP family from mesophilic sources. The unstructured N-terminal tail may be crucial for the unusual aggregation mechanism of Sso AcP previously reported. Sso AcP catalytic activity is reduced at room temperature but rises at its working temperature to values comparable to those displayed by its mesophilic counterparts at 25-37 degrees C. Such a reduced activity can result from protein rigidity and from the active site stiffening due the presence of a salt bridge between the C-terminal carboxylate and the active site arginine. Sso AcP is characterized by a melting temperature, Tm, of 100.8 degrees C and an unfolding free energy, DeltaG(U-F)H2O, at 28 degrees C and 81 degrees C of 48.7 and 20.6 kJ mol(-1), respectively. The kinetic and structural data indicate that mesophilic and hyperthermophilic AcP's display similar enzymatic activities and conformational stabilities at their working conditions. Structural analysis of the factor responsible for Sso AcP thermostability with respect to mesophilic AcP's revealed the importance of a ion pair network stabilizing particularly the beta-sheet and the loop connecting the fourth and fifth strands, together with increased density packing, loop shortening and a higher alpha-helical propensity.
We previously demonstrated that IκBα markedly increases the dissociation rate of DNA from NF-κB. The mechanism of this process remained a puzzle because no ternary complex was observed, and structures show that the DNA and IκBα binding sites on NF-κB are overlapping. The kinetics of interaction of IκBα with NF-κB and its complex with DNA were analyzed by using stopped-flow experiments in which fluorescence changes in pyrene-labeled DNA or the native tryptophan in IκBα were monitored. Rate constants governing the individual steps in the reaction were obtained from analysis of the measured rate vs. concentration profiles. The NF-κB association with DNA is extremely rapid with a rate constant of 1.5 × 10 8 M , yielding a K D of 2.8 nM. When IκBα is added to the NF-κB-DNA complex, we observe the formation of a transient ternary complex in the first few milliseconds of the fluorescence trace, which rapidly rearranges to release DNA. The rate constant of this IκBα-mediated dissociation is nearly equal to the rate constant of association of IκBα with the NF-κB-DNA complex, showing that IκBα is optimized to repress transcription. The rate constants for the individual steps of a more folded mutant IκBα were also measured. This mutant associates with NF-κB more rapidly than wild-type IκBα, but it associates with the NF-κB-DNA complex more slowly and also is less efficient at mediating dissociation of the NF-κB-DNA complex.
Background:  2 -Microglobulin (2m) is a paradigmatic amyloidogenic protein. Results:In vitro, the molecular chaperone ␣B-crystallin affects the oligomerization and the fibrillogenesis of 2m and its R3A mutant. Conclusion: ␣B-crystallin prevents 2m aggregation at various stages of its aggregation pathway. Significance: Molecular chaperones may be relevant to amyloid formation in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.