A 24060. AbstractFruit growers and workers were surveyed to determine the types of protective clothing and equipment they would wear while mixing and applying Parathion and Captan; their knowledge of pesticide hazard; and the relationships between knowledge of hazard, demographic data, and clothing and equipment choices. The data indicate that the growers and workers often do not wear recommended clothing and equipment when handling pesticides. The majority of the sample would normally wear work shirts and pants for mixing and spraying either pesticide. Nearly 50 percent of the respondents would wear waterproof gloves and respirators when handling Parathion. A statistically significant relationship was found between respondents' knowledge of the relative hazard of Parathion and the use of protective clothing. Growers and workers rating Parathion as "very hazardous" would use more protective clothing and equipment than would those giving Parathion a lower rating. The results suggest that agencies with major responsibilities for training and advising growers and workers on pesticide safety should give greater emphasis to the protective gear needed for pesticides with varying toxicities.
Two knit glove fabrics, one of 100% cotton and one of 100% polypropylene, were examined for their capability to decrease the penetration of the organophosphate insecticides (OPs), azinphos-methyl and paraoxon after 4 h at field concentrations (3000 and 15 ppm, respectively) through an in vitro epidermal system (Skin2@, Advanced Tissue Systems, LaJolla, CAI. The glove fabrics were examined under three different conditions of use: new, after they had been abraded and after they had been abraded and then laundered. New and laundered cotton fabric was also examined for its capability to decrease the penetration of azinphos-methy through another in vitro epidermal system (Epiderm@, MatTek Corp., Ashland, MA), after 4 and 24 h of exposure. Capability of the media under the in vitro epidermal systems to inhibit brain acetylcholinesterase (AChE) was used as the indicator of penetration. Results were compared to OP-caused inhibitions seen in media under the fabric alone and in media under the in vitro epidermal systems alone. Incubations of azinphos-methyl suspensions and the in vitro epidermal systems covered with fabric indicated that both the epidermal cells and fabric provided protection against AChE inhibition caused by this OP and that the protective effects were additive, whether measured after 4 or 24 h of exposure. Therefore, neither laundering nor abrasion followed by laundering altered the capability of the in vitro epidermal systems to absorb azinphos-methyl suspension. For paraoxon solution, however, new cotton glove fabric prevented absorption, and this protective effect, noted after 4 h of exposure, was lost when the fabric was laundered. Abrading the fabric did not cause a greater effect than laundering alone. These results suggest that the pesticide as well as its formulation may be factors of consideration when protective fabrics are chosen, and that, for cotton glove fabric, the protection against some OPs may best be provided before the fabric is laundered.
Two knit glove fabrics, one of 100% cotton and one of 100% polypropylene, were examined for their capability to decrease the penetration of the organophosphate insecticides (OPs), azinphos‐methyl and paraoxon after 4 h at field concentrations (3000 and 15 ppm, respectively) through an in vitro epidermal system (Skin2®, Advanced Tissue Systems, LaJolla, CA). The glove fabrics were examined under three different conditions of use: new, after they had been abraded and after they had been abraded and then laundered. New and laundered cotton fabric was also examined for its capability to decrease the penetration of azinphos‐methy through another in vitro epidermal system (Epiderm®, MatTek Corp., Ashland, MA), after 4 and 24 h of exposure. Capability of the media under the in vitro epidermal systems to inhibit brain acetylcholinesterase (AChE) was used as the indicator of penetration. Results were compared to OP‐caused inhibitions seen in media under the fabric alone and in media under the in vitro epidermal systems alone. Incubations of azinphos‐methyl suspensions and the in vitro epidermal systems covered with fabric indicated that both the epidermal cells and fabric provided protection against AChE inhibition caused by this OP and that the protective effects were additive, whether measured after 4 or 24 h of exposure. Therefore, neither laundering nor abrasion followed by laundering altered the capability of the in vitro epidermal systems to absorb azinphos‐methyl suspension. For paraoxon solution, however, new cotton glove fabric prevented absorption, and this protective effect, noted after 4 h of exposure, was lost when the fabric was laundered. Abrading the fabric did not cause a greater effect than laundering alone. These results suggest that the pesticide as well as its formulation may be factors of consideration when protective fabrics are chosen, and that, for cotton glove fabric, the protection against some OPs may best be provided before the fabric is laundered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.