Abstract. Efficient transport pathways for ozone-depleting very short-lived substances (VSLSs) from their source regions into the stratosphere are a matter of current scientific debate; however they have yet to be fully identified on an observational basis. Understanding the increasing impact of chlorine-containing VSLSs (Cl-VSLSs) on stratospheric ozone depletion is important in order to validate and improve model simulations and future predictions. We report on a transport study using airborne in situ measurements of the Cl-VSLSs dichloromethane (CH2Cl2) and trichloromethane (chloroform, CHCl3) to derive a detailed description of two transport pathways from (sub)tropical source regions into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) in the Northern Hemisphere (NH) late summer. The Cl-VSLS measurements were obtained in the upper troposphere and lower stratosphere (UTLS) above western Europe and the midlatitude Atlantic Ocean in the frame of the WISE (Wave-driven ISentropic Exchange) aircraft campaign in autumn 2017 and are combined with the results from a three-dimensional simulation of a Lagrangian transport model as well as back-trajectory calculations. Compared to background measurements of similar age we find up to 150 % enhanced CH2Cl2 and up to 100 % enhanced CHCl3 mixing ratios in the extratropical lower stratosphere (Ex-LS). We link the measurements of enhanced CH2Cl2 and CHCl3 mixing ratios to emissions in the region of southern and eastern Asia. Transport from this area to the Ex-LS at potential temperatures in the range of 370–400 K takes about 6–11 weeks via the Asian summer monsoon anticyclone (ASMA). Our measurements suggest anthropogenic sources to be the cause of these strongly elevated Cl-VSLS concentrations observed at the top of the lowermost stratosphere (LMS). A faster transport pathway into the Ex-LS is derived from particularly low CH2Cl2 and CHCl3 mixing ratios in the UTLS. These low mixing ratios reflect weak emissions and a local seasonal minimum of both species in the boundary layer of Central America and the tropical Atlantic. We show that air masses uplifted by hurricanes, the North American monsoon, and general convection above Central America into the tropical tropopause layer to potential temperatures of about 360–370 K are transported isentropically within 5–9 weeks from the boundary layer into the Ex-LS. This transport pathway linked to the North American monsoon mainly impacts the middle and lower part of the LMS with particularly low CH2Cl2 and CHCl3 mixing ratios. In a case study, we specifically analyze air samples directly linked to the uplift by the Category 5 Hurricane Maria that occurred during October 2017 above the Atlantic Ocean. CH2Cl2 and CHCl3 have similar atmospheric sinks and lifetimes, but the fraction of biogenic emissions is clearly higher for CHCl3 than for the mainly anthropogenically emitted CH2Cl2; consequently lower CHCl3 : CH2Cl2 ratios are expected in air parcels showing a higher impact of anthropogenic emissions. The observed CHCl3 : CH2Cl2 ratio suggests clearly stronger anthropogenic emissions in the region of southern and eastern Asia compared to those in the region of Central America and the tropical Atlantic. Overall, the transport of strongly enhanced CH2Cl2 and CHCl3 mixing ratios from southern and eastern Asia via the ASMA is the main factor in increasing the chlorine loading from the analyzed VSLSs in the Ex-LS during the NH late summer. Thus, further increases in Asian CH2Cl2 and CHCl3 emissions, as frequently reported in recent years, will further increase the impact of Cl-VSLSs on stratospheric ozone depletion.
Abstract. We report on measurements of total bromine (Brtot) in the upper troposphere and lower stratosphere taken during 15 flights with the German High Altitude and LOng range research aircraft (HALO). The research campaign WISE (Wave-driven ISentropic Exchange) included regions over the North Atlantic, Norwegian Sea and north-western Europe in fall 2017. Brtot is calculated from measured total organic bromine (Brorg) added to inorganic bromine (Bryinorg), evaluated from measured BrO and photochemical modelling. Combining these data, the weighted-mean [Brtot] is 19.2 ± 1.2 ppt in the northern hemispheric lower stratosphere (LS) in agreement with expectations for Brtot in the middle stratosphere (Engel and Rigby et al. (2018)). The data reflects the expected variability in Brtot in the LS due to variable influx of shorter-lived brominated source and product gases from different regions of entry. A closer look into Brorg and Bryinorg, as well as simultaneously measured transport tracers (CO and N2O) and an air mass lag-time tracer (SF6), suggests that bromine-rich air masses persistently protruded into the lowermost stratosphere (LMS) in boreal summer, creating a high bromine region (HBrR). A subsection, HBrR*, has a weighted average of [Brtot] = 20.9 ± 0.8 ppt. The most probable source region is former air from the tropical upper troposphere and tropopause layer (UT/TTL) with a weighted mean [Brtot] = 21.6 ± 0.7 ppt. CLaMS Lagrangian transport modelling shows that the HBrR air mass consists of 51.2 % from the tropical troposphere, 27.1 % from the stratospheric background, and 6.4 % from the mid-latitude troposphere (as well as contributions from other domains). The majority of the surface air reaching the HBrR is from the Asian monsoon and its adjacent tropical regions, which greatly influences trace gas transport into the LMS in boreal summer and fall. Tropical cyclones from Central America in addition to air associated with the Asian monsoon region contribute to the elevated Brtot observed in the UT/TTL. TOMCAT global 3–D model simulations of a concurrent increase of Brtot show an associated O3 change of −2.6 ± 0.7 % in the LS and −3.1 ± 0.7 % near the tropopause. Our study of varying Brtot in the LS also emphasizes the need for more extensive monitoring of stratospheric Brtot globally and seasonally to fully understand its impact on LMS O3 and its radiative forcing of climate, as well as in aged air in the middle stratosphere to elucidate the stratospheric trend in bromine.
Abstract. We report on measurements of total bromine (Brtot) in the upper troposphere and lower stratosphere taken during 15 flights with the German High Altitude and LOng range research aircraft (HALO). The research campaign WISE (Wave-driven ISentropic Exchange) included regions over the North Atlantic, Norwegian Sea, and northwestern Europe in fall 2017. Brtot is calculated from measured total organic bromine (Brorg) added to inorganic bromine (Bryinorg), evaluated from measured BrO and photochemical modeling. Combining these data, the weighted mean [Brtot] is 19.2±1.2 ppt in the northern hemispheric lower stratosphere (LS), in agreement with expectations for Brtot in the middle stratosphere (Engel and Rigby et al., 2018). The data reflect the expected variability in Brtot in the LS due to variable influx of shorter lived brominated source and product gases from different regions of entry. A closer look into Brorg and Bryinorg, as well as simultaneously measured transport tracers (CO and N2O) and an air mass lag time tracer (SF6), suggests that bromine-rich air masses persistently protruded into the lowermost stratosphere (LMS) in boreal summer, creating a high bromine region (HBrR). A subsection, HBrR∗, has a weighted average of [Brtot] = 20.9±0.8 ppt. The most probable source region is air recently transported from the tropical upper troposphere and tropopause layer (UT/TTL) with a weighted mean of [Brtot] = 21.6±0.7 ppt. CLaMS Lagrangian transport modeling shows that the HBrR air mass consists of 51.2 % from the tropical troposphere, 27.1 % from the stratospheric background, and 6.4 % from the midlatitude troposphere (as well as contributions from other domains). The majority of the surface air reaching the HBrR is from the Asian monsoon and its adjacent tropical regions, which greatly influences trace gas transport into the LMS in boreal summer and fall. Tropical cyclones from Central America in addition to air associated with the Asian monsoon region contribute to the elevated Brtot observed in the UT/TTL. TOMCAT global 3-D model simulations of a concurrent increase of Brtot show an associated O3 change of -2.6±0.7 % in the LS and -3.1±0.7 % near the tropopause. Our study of varying Brtot in the LS also emphasizes the need for more extensive monitoring of stratospheric Brtot globally and seasonally to fully understand its impact on LMS O3 and its radiative forcing of climate, as well as in aged air in the middle stratosphere to elucidate the stratospheric trend in bromine.
Abstract. Efficient transport pathways for ozone depleting very short-lived substances (VSLS) from their source regions into the stratosphere are a matter of current scientific debate, however they have yet to be fully identified on an observational basis. Understanding the increasing impact of chlorine containing VSLS (Cl-VSLS) on stratospheric ozone depletion is important in order to validate and improve model simulations and future predictions. We report on the first transport study using airborne in situ measurements of the Cl-VSLS dichloromethane (CH2Cl2) and trichloromethane (chloroform, CHCl3) to derive a detailed description of the two most efficient and fast transport pathways from (sub-)tropical source regions into the extratropical lower stratosphere (Ex-LS) in northern hemisphere (NH) late summer. The Cl-VSLS measurements were obtained in the upper troposphere and lower stratosphere (UTLS) above Western Europe and the mid latitude Atlantic Ocean in the frame of the WISE (Wave-driven ISentropic Exchange) aircraft campaign in autumn 2017 and are combined with the results from a three-dimensional simulation of a Lagrangian transport model as well as back-trajectory calculations. Compared to background measurements of similar age we find up to 150 % enhanced CH2Cl2 and up to 100 % enhanced CHCl3 mixing ratios in the Ex-LS. We link the measurements of enhanced mixing ratios to emissions in the region of southern and eastern Asia. Transport from this area to the Ex-LS at potential temperatures in the range of 370–400 K takes about 5–10 weeks via the Asian summer monsoon anticyclone (ASMA). Our measurements suggest anthropogenic sources to be the cause of these strongly elevated Cl-VSLS concentrations observed at the top of the lowermost stratosphere (LMS). A faster transport pathway into the Ex-LS is derived from particularly low CH2Cl2 and CHCl3 mixing ratios in the UTLS. These low mixing ratios reflect weak emission sources and a local seasonal minimum of both species in the boundary layer of Central America and the tropical Atlantic. We show that air masses uplifted by hurricanes, the North American monsoon, and general convection above Central America into the tropical tropopause layer to potential temperatures of about 360–370 K are transported isentropically within 1–5 weeks into the Ex-LS. This transport pathway linked to the North American monsoon mainly impacts the middle and lower part of the LMS with particularly low CH2Cl2 and CHCl3 mixing ratios. In a case study, we specifically analyze air samples directly linked to the uplift by the category 5 hurricane Maria that occurred during October 2017 above the Atlantic Ocean. Regionally differing CHCl3 : CH2Cl2 emission ratios derived from our UTLS measurements suggest a clear similarity between CHCl3 and CH2Cl2 when emitted by anthropogenic sources and differences between the two species mainly caused by additional, likely biogenic, CHCl3 sources. Overall, the transport of strongly enhanced CH2Cl2 and CHCl3 mixing ratios from southern and eastern Asia via the ASMA is the main factor for increasing the chlorine loading from the analyzed VSLS in the Ex-LS during NH late summer. Thus, further increases in Asian CH2Cl2 and CHCl3 emissions, as frequently reported in recent years, will further increase the impact of Cl-VSLS on stratospheric ozone depletion.
Abstract. During winter 2015/2016, the Arctic stratosphere was characterized by extraordinarily low temperatures in connection with a very strong polar vortex and with the occurrence of extensive polar stratospheric clouds. From mid-December 2015 until mid-March 2016, the German research aircraft HALO (High Altitude and Long-Range Research Aircraft) was deployed to probe the lowermost stratosphere in the Arctic region within the POLSTRACC (Polar Stratosphere in a Changing Climate) mission. More than 20 flights have been conducted out of Kiruna, Sweden, and Oberpfaffenhofen, Germany, covering the whole winter period. Besides total reactive nitrogen (NOy), observations of nitrous oxide, nitric acid, ozone, and water were used for this study. Total reactive nitrogen and its partitioning between the gas and particle phases are key parameters for understanding processes controlling the ozone budget in the polar winter stratosphere. The vertical redistribution of total reactive nitrogen was evaluated by using tracer–tracer correlations (NOy–N2O and NOy–O3). The trace gases are well correlated as long as the NOy distribution is controlled by its gas-phase production from N2O. Deviations of the observed NOy from this correlation indicate the influence of heterogeneous processes. In early winter no such deviations have been observed. In January, however, air masses with extensive nitrification were encountered at altitudes between 12 and 15 km. The excess NOy amounted to about 6 ppb. During several flights, along with gas-phase nitrification, indications for extensive occurrence of nitric acid containing particles at flight altitude were found. These observations support the assumption of sedimentation and subsequent evaporation of nitric acid-containing particles, leading to redistribution of total reactive nitrogen at lower altitudes. Remnants of nitrified air masses have been observed until mid-March. Between the end of February and mid-March, denitrified air masses have also been observed in connection with high potential temperatures. This indicates the downward transport of air masses that have been denitrified during the earlier winter phase. Using tracer–tracer correlations, missing total reactive nitrogen was estimated to amount to 6 ppb. Further, indications of transport and mixing of these processed air masses outside the vortex have been found, contributing to the chemical budget of the winter lowermost stratosphere. Observations within POLSTRACC, at the bottom of the vortex, reflect heterogeneous processes from the overlying Arctic winter stratosphere. The comparison of the observations with CLaMS model simulations confirm and complete the picture arising from the present measurements. The simulations confirm that the ensemble of all observations is representative of the vortex-wide vertical NOy redistribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.