BackgroundHuman milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool.The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2′-fucosyllactose (2′-FL), 3′-fucosyllactose (3′-FL), 3′-sialyl-lactose (3′-SL), 6′-sialyl-lactose (6′-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison.Results Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2′-FL and 3′- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates.Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95–99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78–80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95–99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates.ConclusionHere we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0867-4) contains supplementary material, which is available to authorized users.
Fucosyllactoses (2′- or 3′-FL) account for up to 20% of human milk oligosaccharides (HMOs). Infant bifidobacteria, such as Bifidobacterium longum subsp. infantis, utilize the lactose moiety to form lactate and acetate, and metabolize L-fucose to 1,2-propanediol (1,2-PD). Eubacterium hallii is a common member of the adult gut microbiota that can produce butyrate from lactate and acetate, and convert 1,2-PD to propionate. Recently, a Swiss cohort study identified E. hallii as one of the first butyrate producers in the infant gut. However, the global prevalence of E. hallii and its role in utilization of HMO degradation intermediates remains unexplored. Fecal 16S rRNA gene libraries (n = 857) of humans of all age groups from Venezuela, Malawi, Switzerland, and the USA were screened for the occurrence of E. hallii. Single and co-culture experiments of B. longum subsp. infantis and E. hallii were conducted in modified YCFA containing acetate and glucose, L-fucose, or FL. Bifidobacterium spp. (n = 56) of different origin were screened for the ability to metabolize L-fucose. Relative abundance of E. hallii was low (10−5–10−3%) during the first months but increased and reached adult levels (0.01–10%) at 5–10 years of age in all four populations. In single culture, B. longum subsp. infantis grew in the presence of all three carbohydrates while E. hallii was metabolically active only with glucose. In co-culture E. hallii also grew with L-fucose or FL. In co-cultures grown with glucose, acetate, and glucose were consumed and nearly equimolar proportions of formate and butyrate were formed. B. longum subsp. infantis used L-fucose and produced 1,2-PD, acetate and formate in a ratio of 1:1:1, while 1,2-PD was used by E. hallii to form propionate. E. hallii consumed acetate, lactate and 1,2-PD released by B. longum subsp. infantis from FL, and produced butyrate, propionate, and formate. Beside B. longum subsp. infantis, Bifidobacterium breve, and a strain of B. longum subsp. suis were able to utilize L-fucose. This study identified a trophic interaction of infant bifidobacteria and E. hallii during L-fucose degradation, and pointed at E. hallii as a metabolically versatile species that occurs in infants and utilizes intermediates of bifidobacterial HMO fermentation.
Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting.Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees.Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage.The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may be undergoing dynamic succession.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.