We have studied the temperature dependences of the so-called charge and orbital ordering reflections in the neighborhood of the Verwey transition by means of resonant x-ray scattering at the Fe K and L edges on a high purity single crystal of magnetite. Contrary to recently published results [J. E. Lorenzo, Phys. Rev. Lett. 101, 226401 (2008)10.1103/PhysRevLett.101.226401], we show that all the reflections studied disappear simultaneously at the Verwey transition for both edges, on and off resonance. This means that there is no correlation between the Verwey (123.5 K) and the spin-reorientation (130 K) transitions and that the resonant reflections are driven by the lattice distortions.
Fluid catalytic cracking is a chemical conversion process of industrial scale. This process, utilizing porous catalysts composed of clay and zeolite, converts heavy crude-oil fractions into transportation fuel and petrochemical feedstocks. Among other factors iron-rich reactor and feedstream impurities cause these catalyst particles to permanently deactivate. Herein, we report tomographic X-ray absorption spectroscopy measurements that reveal the presence of dissimilar iron impurities of specific localization within a single deactivated particle. Whereas the iron natural to clay in the composite seems to be unaffected by operation, exterior-facing and feedstream-introduced iron was found in two forms. Those being minute quantities of ferrous oxide, located near regions of increased porosity, and impurities rich in Fe , preferentially located in the outer dense part of the particle and suggested to contribute to the formation of an isolating amorphous silica alumina envelope.
The structural, electronic and magnetic properties of TbMn(1-x)Co(x)O(3) (0.1 ≤ x ≤ 0.9) compounds are reported. The samples are isostructural to TbMnO(3) adopting the orthorhombic distorted perovskite structure (Pbnm), except for x = 0.4, 0.5 and 0.6, where an ordered double perovskite structure (P2(1)/n) is found. X-ray absorption spectra at the Mn and Co K edges show an incomplete charge transfer between Mn and Co atoms yielding a mixed valence state Mn(3+)/Mn(4+) and Co(3+)/Co(2+) for the whole series. Neutron powder diffraction measurements show the development of a ferromagnetic ground state for the intermediate compositions (0.3 ≤ x ≤ 0.6) indicating that the ferromagnetic superexchange Mn(4+)-O-Co(2+) interaction is the strongest among a wide set of competitive interactions. The ferromagnetic ordering is, however, not fully achieved and coexists with glassy magnetic properties. With increasing concentration of Co (x ≥ 0.7) the long range ordering vanishes and only a glassy magnetic behavior with slow dynamics is found. These properties could be related to the existence of magnetically inhomogeneous small clusters arising from competitive magnetic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.