eThe tetratricopeptide repeat (TPR) structural motif is known to occur in a wide variety of proteins present in prokaryotic and eukaryotic organisms. The TPR motif represents an elegant module for the assembly of various multiprotein complexes, and thus, TPR-containing proteins often play roles in vital cell processes. As the TPR profile is well defined, the complete TPR protein repertoire of a bacterium with a known genomic sequence can be predicted. This provides a tremendous opportunity for investigators to identify new TPR-containing proteins and study them in detail. In the past decade, TPR-containing proteins of bacterial pathogens have been reported to be directly related to virulence-associated functions. In this minireview, we summarize the current knowledge of the TPR-containing proteins involved in virulence mechanisms of bacterial pathogens while highlighting the importance of TPR motifs for the proper functioning of class II chaperones of a type III secretion system in the pathogenesis of Yersinia, Pseudomonas, and Shigella.
D-alanyl-D-alanine carboxypeptidase, product of dacD gene in Francisella, belongs to penicillin binding proteins (PBPs) and is involved in remodeling of newly synthetized peptidoglycan. In E. coli, PBPs are synthetized in various growth phases and they are able to substitute each other to a certain extent. The DacD protein was found to be accumulated in fraction enriched in membrane proteins from severely attenuated dsbA deletion mutant strain. It has been presumed that the DsbA is not a virulence factor by itself but that its substrates, whose correct folding and topology are dependent on the DsbA oxidoreductase and/or isomerase activities, are the primary virulence factors. Here we demonstrate that Francisella DacD is required for intracellular replication and virulence in mice. The dacD insertion mutant strain showed higher sensitivity to acidic pH, high temperature and high osmolarity when compared to the wild-type. Eventually, transmission electron microscopy revealed differences in mutant bacteria in both the size and defects in outer membrane underlying its SDS and serum sensitivity. Taken together these results suggest DacD plays an important role in Francisella pathogenicity.
Francisella tularensis, an intracellular pathogen causing the disease tularemia, utilizes surface glycoconjugates such as lipopolysaccharide, capsule, and capsule-like complex for its protection against inhospitable conditions of the environment. Francisella species also possess a functional glycosylation apparatus by which specific proteins are O-glycosidically modified. We here created a mutant with a nonfunctional FTS_1402 gene encoding for a putative glycan flippase and studied the consequences of its disruption. The mutant strain expressed diminished glycosylation similarly to, but to a lesser extent than, that of the oligosaccharyltransferase-deficient ΔpglA mutant. In contrast to ΔpglA, inactivation of FTS_1402 had a pleiotropic effect, leading to alteration in glycosylation and, importantly, to decrease in lipopolysaccharide, capsule, and/or capsule-like complex production, which were reflected by distinct phenotypes in host-pathogen associated properties and virulence potential of the two mutant strains. Disruption of FTS_1402 resulted in enhanced sensitivity to complement-mediated lysis and reduced virulence in mice that was independent of diminished glycosylation. Importantly, the mutant strain induced a protective immune response against systemic challenge with homologous wild-type FSC200 strain. Targeted disruption of genes shared by multiple metabolic pathways may be considered a novel strategy for constructing effective live, attenuated vaccines.
Although dendritic cells (DCs) control the priming of the adaptive immunity response, a comprehensive description of their behavior at the protein level is missing. The introduction of the quantitative proteomic technique of metabolic labeling (SILAC) into the field of DC research would therefore be highly beneficial. To achieve this, we applied SILAC labeling to primary bone marow-derived DCs (BMDCs). These cells combine both biological relevance and experimental feasibility, as their in vitro generation permits the use of (13)C/(15)N-labeled amino acids. Interestingly, BMDCs appear to exhibit a very active arginine metabolism. Using standard cultivation conditions, ∼20% of all protein-incorporated proline was a byproduct of heavy arginine degradation. In addition, the dissipation of (15)N from labeled arginine to the whole proteome was observed. The latter decreased the mass accuracy in MS and affected the natural isotopic distribution of peptides. SILAC-connected metabolic issues were shown to be enhanced by GM-CSF, which is used for the differentiation of DC progenitors. Modifications of the cultivation procedure suppressed the arginine-related effects, yielding cells with a proteome labeling efficiency of ≥90%. Importantly, BMDCs generated according to the new cultivation protocol preserved their resemblance to inflammatory DCs in vivo, as evidenced by their response to LPS treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.