A prevailing view in memory research is that CA3 principally supports spatial processes. However, few studies have investigated the contribution of CA3 to nonspatial memory function. Interestingly, the proximal part of CA3 (close to the dentate gyrus) predominantly projects to distal CA1 (away from the dentate gyrus), which preferentially processes nonspatial information. Moreover, the cytoarchitecture and connectivity patterns in the proximal and distal parts of CA3 strongly differ, suggesting a functional segregation in this area. Here, we tested whether CA3 is recruited during nonspatial recognition memory, and whether nonspatial information is differentially represented along the proximodistal axis of CA3. Furthermore, we investigated whether the pattern of activation within CA3 would mirror that of CA1. We used a high-resolution imaging technique specifically designed to analyze brain activity in distant areas that is based on the detection of the expression of the immediate-early gene Arc, used as a marker of neuronal activation. We showed that proximal CA3 is strongly recruited during a nonspatial delayed nonmatching-to-sample recognition memory task in rats, while distal CA3 is not. In addition, distal CA1 was more activated than proximal CA1 in the same task. These findings suggest a functional segregation of CA3 that mirrors that of CA1, and potentially indicate the existence of a proximal CA3-distal CA1 hippocampal subnetwork that would preferentially process nonspatial information during recognition memory.
Many patients with borderline personality disorder (BPD) experience difficulties in empathizing with others and are sensitive to social exclusion. Accordingly, the authors developed a novel Social Interaction Empathy Task to examine empathy for physical and psychological pain from first- and third-person perspectives. Fifty female patients with BPD and forty-eight controls matched for age and gender were included. Alexithymia was also measured. Patients with BPD rated neutral and psychologically painful situations as more painful than healthy controls, and patients with BPD rated psychological pain as more intense in the first-person perspective than in the third-person perspective. In contrast, controls did not differentiate between the perspectives and rated physical pain as most intense. The impact of early adversity on empathy for psychological pain was mediated by alexithymia. Increased sensitivity for psychological pain in BPD correlated with symptom severity. BPD is associated with altered empathy for pain, which is related to difficulties in reflecting emotional states.
For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.