Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a life-time risk of 1 in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry GWAS in ALS including 29,612 ALS patients and 122,656 controls which identified 15 risk loci in ALS. When combined with 8,953 whole-genome sequenced individuals (6,538 ALS patients, 2,415 controls) and the largest cortex-derived eQTL dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, repeat expansions or regulatory effects. ALS associated risk loci were shared with multiple traits within the neurodegenerative spectrum, but with distinct enrichment patterns across brain regions and cell-types. Of the environmental and life-style risk factors obtained from literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. All ALS associated signals combined reveal a role for perturbations in vesicle mediated transport and autophagy, and provide evidence for cell-autonomous disease initiation in glutamatergic neurons.
ObjectiveTo evaluate the accuracy of the recently proposed diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS).MethodsWe enrolled 42 patients with hindbrain punctate and/or linear enhancements (<3 mm in diameter) and tested the CLIPPERS criteria.ResultsAfter a median follow-up of 50 months (IQR 25–82), 13 out of 42 patients were CLIPPERS-mimics: systemic and central nervous system lymphomas (n=7), primary central nervous system angiitis (n=4) and autoimmune gliopathies (n=2). The sensitivity and specificity of the CLIPPERS criteria were 93% and 69%, respectively. Nodular enhancement (
≥
3 mm in diameter), considered as a red flag in CLIPPERS criteria, was present in 4 out of 13 CLIPPERS-mimics but also in 2 out of 29 patients with CLIPPERS, explaining the lack of sensitivity. Four out of 13 CLIPPERS-mimics who initially met the CLIPPERS criteria displayed red flags at the second attack with a median time of 5.5 months (min 3, max 18), explaining the lack of specificity. One of these four patients had antimyelin oligodendrocyte glycoprotein antibodies, and the three remaining patients relapsed despite a daily dose of prednisone/prednisolone
≥
30 mg and a biopsy targeting atypical enhancing lesions revealed a lymphoma.ConclusionsOur study highlights that (1) nodular enhancement should be considered more as an unusual finding than a red flag excluding the diagnosis of CLIPPERS; (2) red flags may occur up to 18 months after disease onset; (3) as opposed to CLIPPERS-mimics, no relapse occurs when the daily dose of prednisone/prednisolone is
≥
30 mg; and (4) brain biopsy should target an atypical enhancing lesion when non-invasive investigations remain inconclusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.