Autologous bone marrow concentrate (BMC) and mesenchymal stem cells (MSCs) have beneficial effects on the healing of bone defects. To address the shortcomings associated with the use of primary MSCs, induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have been proposed as an alternative. The aim of this study was to investigate the bone regeneration potential of human iMSCs combined with calcium phosphate granules (CPG) in critical-size defects in the proximal tibias of mini-pigs in the early phase of bone healing compared to that of a previously reported autograft treatment and treatment with a composite made of either a combination of autologous BMC and CPG or CPG alone. iMSCs were derived from iPSCs originating from human fetal foreskin fibroblasts (HFFs). They were able to differentiate into osteoblasts in vitro, express a plethora of bone morphogenic proteins (BMPs) and secrete paracrine signaling-associated cytokines such as PDGF-AA and osteopontin. Radiologically and histomorphometrically, HFF-iMSC + CPG transplantation resulted in significantly better osseous consolidation than the transplantation of CPG alone and produced no significantly different outcomes compared to the transplantation of autologous BMC + CPG after 6 weeks. The results of this translational study imply that iMSCs represent a valuable future treatment option for load-bearing bone defects in humans.
Chemotherapy resistance is a main cause of therapeutic failure and death in bladder cancer. With the approval of immune checkpoint inhibitors, prediction of platinum treatment became of great clinical importance. Matrix metalloproteinase-7 (MMP-7) was shown to be involved in cisplatin resistance. Therefore, tissue and circulating MMP-7 levels were evaluated in 124 bladder cancer patients who received postoperative platinum-based chemotherapy. Tissue MMP-7 levels were analyzed by immunohistochemistry in 72 formalin-fixed, paraffin-embedded chemo-naïve tumor samples, while MMP-7 serum concentrations were determined in 132 serum samples of an independent cohort of 52 patients. MMP-7 tissue and serum levels were correlated with clinicopathological and follow-up data. MMP-7 gene expression was determined by RT-qPCR in 20 urothelial cancer cell lines and two non-malignant urothelial cell lines. MMP-7 was overexpressed in RT-112 and T-24 cells by stable transfection, to assess its functional involvement in platinum sensitivity. High MMP-7 tissue expression and pretreatment serum concentrations were independently associated with poor overall survival (tissue HR = 2.296, 95%CI = 1.235–4.268 and p = 0.009; serum HR = 2.743, 95%CI = 1.258–5.984 and p = 0.011). Therefore, MMP-7 tissue and serum analysis may help to optimize therapeutic decisions. Stable overexpression in RT-112 and T-24 cells did not affect platinum sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.