We present a first-principles lattice QCD þ QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects is a
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, a hvp µ , in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum polarization function. To this end we employ several complementary approaches, including Padé fits, time moments and the time-momentum representation. We correct our results for finitevolume effects by combining the Gounaris-Sakurai parameterization of the timelike pion form factor with the Lüscher formalism. On a subset of our ensembles we have derived an upper bound on the magnitude of quark-disconnected diagrams and found that they decrease the estimate for a hvp JHEP10 (2017)020 10 −10 , where the first error is statistical, and the second denotes the combined systematic uncertainty. Based on our findings we discuss the prospects for determining a hvp µ with sub-percent precision.
Abstract:We calculate the strong isospin breaking and QED corrections to meson masses and the hadronic vacuum polarization in an exploratory study on a 64 × 24 3 lattice with an inverse lattice spacing of a −1 = 1.78 GeV and an isospin symmetric pion mass of m π = 340 MeV. We include QED in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. We find that the electromagnetic correction to the leading hadronic contribution to the anomalous magnetic moment of the muon is smaller than 1% for the up quark and 0.1% for the strange quark, although it should be noted that this is obtained using unphysical light quark masses. In addition to the results themselves, we compare the precision which can be reached for the same computational cost using each method. Such a comparison is also made for the meson electromagnetic mass-splittings.
We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Lüscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with Nf = 2 + 1 dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.