The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA–directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.
In double fertilization, the vegetative cell of the male gametophyte (pollen) germinates and forms a pollen tube that brings to the female gametophyte two sperm cells that fertilize the egg and central cell to form the embryo and endosperm, respectively. The 5-methylcytosine DNA glycosylase DEMETER (DME), expressed in the central cell, is required for maternal allele demethylation and gene imprinting in the endosperm. By contrast, little is known about the function of DME in the male gametophyte. Here we show that reduced transmission of the paternal mutant dme allele in certain ecotypes reflects, at least in part, defective pollen germination. DME RNA is detected in pollen, but not in isolated sperm cells, suggesting that DME is expressed in the vegetative cell. Bisulfite sequencing experiments show that imprinted genes (MEA and FWA) and a repetitive element (Mu1a) are hypomethylated in the vegetative cell genome compared with the sperm genome, which is a process that requires DME. Moreover, we show that MEA and FWA RNA are detectable in pollen, but not in isolated sperm cells, suggesting that their expression occurs primarily in the vegetative cell. These results suggest that DME is active and demethylates similar genes and transposons in the genomes of the vegetative and central cells in the male and female gametophytes, respectively. Although the genome of the vegetative cell does not participate in double fertilization, its DME-mediated demethylation is important for male fertility and may contribute to the reconfiguration of the methylation landscape that occurs in the vegetative cell genome.ouble fertilization is unique to flowering plants and underlies the distinctive cellular programming of epigenetic processes, such as plant gene imprinting, which are essential for plant reproduction (1). In the ovule, meiosis produces a haploid megaspore that undergoes three mitoses to form the female gametophyte with egg, central, synergid, and antipodal cells (2). In stamens, each haploid microspore undergoes an asymmetric mitosis to produce a large vegetative cell and a smaller generative cell (binucleate pollen), which have different fates. The generative cell, engulfed in the cytoplasm of the vegetative cell, undergoes a second mitosis to form two sperm cells. The three-cell male gametophyte (trinucleate pollen) dehydrates, matures, and is released from the stamen. Upon encountering specialized cells at the tip of the stigma of a receptive plant, the pollen grain rehydrates and the vegetative cell germinates, producing a pollen tube that grows to the ovules and transports two sperm cells to the female gametophyte where fertilization of egg and central cell generates the embryo and endosperm, respectively (3). The embryo and endosperm develop within the maternal seed coat, and together they comprise the seed. Endosperm, the site where most plant gene imprinting occurs, is a nutrient tissue, acquiring and storing resources from the maternal chalazal seed coat and underlying vasculature to nourish the embryo (4).DNA...
Centromeric constitutive heterochromatin is marked by DNA methylation and dimethylated histone H3 Lys 9 (H3K9me2) in Arabidopsis. RNA-directed DNA methylation (RdDM) is a process that uses 24-nucleotide (nt) small interfering RNAs (siRNAs) to induce de novo methylation to its homologous DNA sequences. Despite the presence of centromeric 24-nt siRNAs, mutations in genes required for RdDM do not appreciably influence the methylation of centromeric repeats. The mechanism by which constitutive heterochromatin is protected from RdDM remains puzzling. Here, we report that the vegetative cell nuclei (VN) of the male gametophyte (pollen) invariably undergo extensive decondensation of centromeric heterochromatin and lose centromere identity. VN show greatly reduced H3K9me2, phenocopying nuclei carrying a mutation in the chromatin remodeller DECREASE IN DNA METHYLATION 1 (DDM1). However, unlike the situation in ddm1 nuclei, the decondensed heterochromatin retains dense CG methylation and transcriptional silencing, and, unexpectedly, is subjected to RdDM-dependent hypermethylation in non-CG contexts. These findings reveal two assembly orders of silent heterochromatin and implicate the condensed form in blocking the RdDM machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.