Acetylcholine, which is associated with Alzheimer’s disease, is widely known to have conformers. The preference of each conformer to undergo neutral hydrolysis is yet to be considered. In this study, we employed density-functional calculations to build the conformers and investigated their preference in one-step neutral hydrolysis. The results showed the preference in ten possible hydrolysis pathways involving seven acetylcholine conformers (reactant), four transition state structures, and two choline conformers (product). Three out of the seven acetylcholine conformers predicted from the results confirmed experimental findings on the conformers stability. We suggested that two out of ten possible pathways were observed in the experimental results based on agreement in reaction energy. Eventually, this study will emphasize the importance of considering acetylcholine conformers in its hydrolysis study.
Density functional theory has been gaining popularity for studying the radical scavenging activity of antioxidants. However, only a few studies investigate the importance of calculation methods on the radical-scavenging reactions. In this study, we examined the significance of (i) the long-range correction on the coulombic interaction and (ii) the London dispersion correction to the hydroperoxyl radical-scavenging reaction of trans-resveratrol and gnetin C. We employed B3LYP, CAM-B3LYP, M06-2X exchange-correlation functionals and B3LYP with the D3 version of Grimme’s dispersion in the calculations. The results showed that long-range correction on the coulombic interaction had a significant effect on the increase of reaction and activation energies. The increase was in line with the change of hydroperoxyl radical’s orientation in the transition state structure. Meanwhile, the London dispersion correction only had a minor effect on the transition state structure, reaction energy and activation energy. Overall, long-range correction on the coulombic interaction had a significant impact on the radical-scavenging reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.