Our previous analysis of the transcriptome of Escherichia coli under nitrosative stress showed that the ytfE gene was one of the highest induced genes. Furthermore, the E. coli strain mutated on the ytfE gene was found to be more sensitive to nitric oxide than the wild-type strain. In the present work, we show that the mutation of the ytfE gene in E. coli yielded a strain that grows poorly under anaerobic respiratory conditions and that has an increased sensitivity to iron starvation. Furthermore, all examined iron-sulphur proteins have decreased activity levels in the strain lacking ytfE. Altogether, the results suggest a role for ytfE in iron-sulphur cluster biogenesis. YtfE was overexpressed in E. coli and it is shown to contain a di-iron centre of the histidine-carboxylate family.
Trichomonas vaginalis is one of a few eukaryotes that have been found to encode several homologues of flavodiiron proteins (FDPs). Widespread among anaerobic prokaryotes, these proteins are believed to function as oxygen and/or nitric oxide reductases to provide protection against oxidative/nitrosative stresses and host immune responses. One of the T. vaginalis FDP homologues is equipped with a hydrogenosomal targeting sequence and is expressed in the hydrogenosomes, oxygen-sensitive organelles that participate in carbohydrate metabolism and assemble iron-sulfur clusters. The bacterial homologues characterized thus far have been dimers or tetramers; the trichomonad protein is a dimer of identical 45-kDa subunits, each noncovalently binding one flavin mononucleotide. The protein reduces dioxygen to water but is unable to utilize nitric oxide as a substrate, similarly to its closest homologue from another human parasite Giardia intestinalis and related archaebacterial proteins. T. vaginalis FDP is able to accept electrons derived from pyruvate or NADH via ferredoxin and is proposed to play a role in the protection of hydrogenosomes against oxygen.
Flavohemoglobins and flavodiiron proteins are two families of enzymes involved in nitrosative detoxification. However, the physiological oxygen-related conditions under which they work and their relative role are still a matter of debate. To address this question we analyzed the function of the putative flavohemoprotein of Staphylococcus aureus, an organism that lacks a flavodiiron-like gene. In this report we show that the recombinant protein contains all features typical of canonical flavohemoglobins and that the transcription of flavohemoglobin gene was upregulated by nitrosative stress in an oxygen-dependent manner. However, and in contrast to other bacterial flavohemoglobins, the S. aureus protein has no apparent role in aerobic nitrosative protection, being only beneficial when cells of S. aureus are submitted to nitrosative stress in a microaerophilic environment. The in vivo data corroborates the proposal that Hmp acts physiologically as a denitrosylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.