cis-Dihydrodiol metabolites were obtained from dioxygenase-catalysed asymmetric dihydroxylations of five monocyclic (azabiphenyl) and four tricyclic (azaphenanthrene) azaarene substrates. Enantiopurity values and absolute configuration assignments were determined using a combination of stereochemical correlation, X-ray crystallography and spectroscopy methods. The degree of regioselectivity found during cis-dihydroxylation of monocyclic azaarenes (2,3 bond >> 3,4 bond) and of tricyclic azaarenes (bay region > non-bay region bonds) was dependent on the type of dioxygenase used. The cis-dihydrodiol metabolite from an azaarene (3-phenylpyridine) was utilised in the chemoenzymatic synthesis of the corresponding trans-dihydrodiol.
Dioxygenase-catalysed trioxygenation of alkyl phenyl sulfides and alkyl benzenes yields enantiopure cis-dihydrodiol sulfoxides and triols respectively; naphthalene cis-dihydrodiol dehydrogenase-catalysed aromatisation of these diastereoisomers gives enantiopure catechols of either configuration.
Enantiopure cis-dihydrodiol bacterial metabolites of substituted benzene substrates were used as precursors, in a chemoenzymatic synthesis of the corresponding benzene oxides and of a substituted oxepine, via dihydrobenzene oxide intermediates. A rapid total racemization of the substituted benzene 2,3-oxides was found to have occurred, via their oxepine valence tautomers, in accord with predictions and theoretical calculations. Reduction of a substituted arene oxide to yield a racemic arene hydrate was observed. Arene hydrates have also been synthesised, in enantiopure form, from the corresponding dihydroarene oxide or trans-bromoacetate precursors. Biotransformation of one arene hydrate enantiomer resulted in a toluene-dioxygenase catalysed cis-dihydroxylation to yield a benzene cis-triol metabolite.
Benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase enzymes,e xpressed in Pseudomonas putida wild-type and Escherichia coli recombinant strains,w ere used to investigate regioselectivitya nd stereoselectivity during dehydrogenationsofarene,cyclic alkane and cyclic alkene vicinal cis-diols.T he dehydrogenase-catalysedp roduction of enantiopure cis-diols, a-ketolsa nd catechols, using benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase,i nvolvedb oth kinetic resolution and asymmetric synthesism ethods.T he chemoenzymatic production and applications of catechol bioproducts in synthesiswere investigated.
Factors that control the competition between toluene dioxgenase-catalysed arene cis-dihydroxylation and dehydrogenase-catalysed ketone reduction have been studied, using whole cells of Pseudomonas putida UV and three alkylaryl ketones. The triol metabolite, obtained from 2,2,2-trifluoroacetophenone, has been used in the synthesis of single enantiomer chiral phenols and benzylic alcohols. Potential applications of the methylether derivatives of the chiral phenols and benzylic alcohols, as resolving agents, have been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.