Novel polyelectrolyte complexes (PECs) between N-carboxyethylchitosan (CECh) and well-defined (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) have been obtained. The modification of chitosan into CECh allows the preparation of PECs in a pH range in which chitosan cannot form complexes. The CECh/PDMAEMA complex is formed in a narrow pH range around 7. The quaternization of the tertiary amino groups of PDMAEMA enables complex formation with CECh both in neutral and in alkaline medium. Cross-linked CECh is also capable of forming complexes with (quaternized) PDMAEMA. The antibacterial activity of (cross-linked) CECh, (quaternized) PDMAEMA, and their complexes against Escherichia coli has been evaluated. In contrast to (quaternized) PDMAEMA, (cross-linked) CECh exhibits no antibacterial activity. The complex formation between cross-linked CECh and (quaternized) PDMAEMA results in a loss of the inherent antibacterial activity of the latter in neutral medium. In acidic medium, the complexes exhibit strong antibacterial activity due to complex disintegration and release of (quaternized) PDMAEMA.
Novel fibrous materials of stereocomplex between high-molecular-weight poly(d- or l-)lactide (HMPDLA or HMPLLA) and diblock copolymers consisting of poly(l- or d-)lactide and poly(N,N-dimethylamino-2-ethyl methacrylate) blocks, respectively (PLLA-block-PDMAEMA or PDLA-block-PDMAEMA), were prepared by solution electrospinning. Fibers with mean diameters ranging from 1400 to 1700 nm were obtained. The stereocomplex formation was evidenced by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses. Annealing at 100 degrees C for 8 h resulted in the appearance of crystalline peaks at 2theta values of 12, 21, and 24 degrees for PLA stereocomplex. X-ray photoelectron spectroscopy (XPS) analyses revealed the gradient composition of the fibers with a surface enriched in tertiary amino groups from PDMAEMA blocks. The availability of tertiary amino groups imparts hemostatic and antibacterial properties to the stereocomplex fibrous materials, as indicated by the performed tests on blood cells and on pathogenic microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.