The miniaturization of machines towards the micron and nanoscale requires the development of joint-like elements that enable and constrain motion. We present a facile method to create colloidal joints, that is, anisotropic colloidal particles functionalized with surface mobile DNA linkers that control the motion range of bonded particles. We demonstrate quantitatively that we can control the flexibility of these colloidal joints by tuning the DNA linker concentration in the bond area. We show that the shape of the colloidal joint controls the range of motion of bonded particles through a maximisation of the bond area. Using spheres, cubes, and dumbbells, we experimentally realize spherical joints, planar sliders, and hinges, respectively. Finally we demonstrate the potential of the colloidal joints for programmable bottom-up self-assembly by creating flexible colloidal molecules and colloidal polymers. The reconfigurability and motion constraint offered by our colloidal joints make them promising building blocks for the development of switchable materials and nanorobots.
The key ingredients to the successful bottom-up construction of complex materials are believed to be colloids with anisotropic shapes and directional, or patchy, interactions. We present an approach for creating such anisotropic patchy particles based on reconfiguring randomly shaped aggregates of colloidal spheres. While colloidal aggregates are often undesirable in colloidal dispersions due to their random shapes, we exploit them as a starting point to synthesize patchy particles. By a deliberate destabilization of the colloidal particles, diffusion-limited aggregation is induced which partitions the particles into randomly shaped aggregates with controlled size distribution. We achieve a reconfiguration of the aggregates into uniform structures by swelling the polymer spheres with an apolar solvent. The swelling lowers the attractive van der Waals forces, lubricates the contact area between the spheres, and drives the reorganization through minimization of the interfacial energy of the swollen polymer network. This reorganization process yields patchy particles whose patch arrangement is uniform for up to five patches. For particles with more patches, we find that the patch orientation depends on the degree of phase separation between the spheres and the monomer. This enables the synthesis of patchy particles with unprecedented patch arrangements. We demonstrate the broad applicability of this recycling strategy for making patchy particles as well as clusters of spheres by varying the swelling ratio, swelling solvent, surfactant concentration, and swelling time.
Surface morphology is a tool to tune physical properties of colloidal suspensions such as the wettability, viscoelasticity, and depletion attractions. Existing synthesis methods to obtain colloids with a rough surface morphology often result in colloids with nontunable surface properties. Here, we developed a synthetic approach to obtain both spherical and shape-anisotropic hybrid colloids with tunable surface morphology. With our approach, monodisperse linear polystyrene colloids, obtained in large quantities using a dispersion polymerization method, are swollen and cross-linked with styrene and 3-(trimethoxysilyl)propyl methacrylate (TPM) in the presence of the polymerization inhibitor hydroquinone. We show that, by varying only two experimental parameters, the concentration of the inhibitor and of TPM during swelling linear polystyrene colloids, three different types of particles can be synthesized. At low TPM concentrations, spherical colloids are obtained where the surface roughness can be tuned by varying the hydroquinone concentration. At intermediate TPM concentrations, single-dimpled colloids are formed with tunable dimple size. High TPM concentrations yield crumpled colloids of various shapes. Additionally, we demonstrate that all particles can be used as templates for silica coating, resulting in electrostatically stabilized silica-coated hybrid colloids or silica shells with rough, smooth, dimpled, or crumbled surface morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.