A theoretical model of multistep gear transmission dynamics is presented. This model is based on the assumption that the connection between the teeth of the gears is with properties within the range from ideal clasic to viscoelastic so that a new model of connection between the teeth was expressed by means of derivative of fractional order. For this model a two-step gear transmision with three degrees of freedom of motion has been used. The obtained solutions are in the analytic form of the expansion according to time. As boundary cases this model gives results for the case of ideally elastic connection of the gear teeth and for the case of viscoelastic connection of the gear teeth, as well. Eigen fractional modes are obtained and a vizualization is done.
A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of vibrations and noise in the gear transmission. Dynamic model of the planetary gears with four degrees of freedom is used. Applying the basic principles of analytical mechanics and taking the initial and boundary conditions into consideration, it is possible to obtain the system of equations representing physical meshing process between the two or more gears. This investigation was focused to a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are obtained, and a visualization is presented. By using MathCAD the solution is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.