Endocrine disruption is a specific form of toxicity, where natural and/or anthropogenic chemicals, known as “endocrine disruptors” (EDs), trigger adverse health effects by disrupting the endogenous hormone system. There is need to harmonize guidance on the regulation of EDs, but this has been hampered by what appeared as a lack of consensus among scientists. This publication provides summary information about a consensus reached by a group of world-leading scientists that can serve as the basis for the development of ED criteria in relevant EU legislation. Twenty-three international scientists from different disciplines discussed principles and open questions on ED identification as outlined in a draft consensus paper at an expert meeting hosted by the German Federal Institute for Risk Assessment (BfR) in Berlin, Germany on 11–12 April 2016. Participants reached a consensus regarding scientific principles for the identification of EDs. The paper discusses the consensus reached on background, definition of an ED and related concepts, sources of uncertainty, scientific principles important for ED identification, and research needs. It highlights the difficulty in retrospectively reconstructing ED exposure, insufficient range of validated test systems for EDs, and some issues impacting on the evaluation of the risk from EDs, such as non-monotonic dose–response and thresholds, modes of action, and exposure assessment. This report provides the consensus statement on EDs agreed among all participating scientists. The meeting facilitated a productive debate and reduced a number of differences in views. It is expected that the consensus reached will serve as an important basis for the development of regulatory ED criteria.
Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.
The advent of new testing systems and "omics"-technologies has left regulatory toxicology facing one of the biggest challenges for decades. That is the question whether and how these methods can be used for regulatory purposes. The new methods undoubtedly enable regulators to address important open questions of toxicology such as species-specific toxicity, mixture toxicity, low-dose effects, endocrine effects or nanotoxicology, while promising faster and more efficient toxicity testing with the use of less animals. Consequently, the respective assays, methods and testing strategies are subject of several research programs worldwide. On the other hand, the practical application of such tests for regulatory purposes is a matter of ongoing debate. This document summarizes key aspects of this debate in the light of the European "regulatory status quo", while elucidating new perspectives for regulatory toxicity testing.
Several transporters belonging to the ABCA subfamily of ABC (ATP-binding cassette) proteins are involved in lipid trafficking. Human ABCA5 and its rat orthologue, rAbca5, represent recently identified subfamily members whose substrate spectrum remains to be defined. The elucidation of (sub)cellular rAbca5 distribution would be expected to provide a basis for optimization of functional analyses. In the present study, we applied in situ hybridization to examine rAbca5 mRNA distribution within sections of rat testis, a tissue expressing high levels of rAbca5 mRNA. We found rAbca5 mRNA to be predominantly expressed in interstitial Leydig cells, which are major sites of testosterone synthesis. To investigate rAbca5 subcellular localization, we constructed expression vectors yielding rAbca5 fused either to EGFP (enhanced green fluorescent protein) or to a peptide bearing the viral V5 epitope. During rAbca5 cDNA cloning, we discovered a splice variant sequence (rAbca5 V20+16), predicted to give rise to a truncated, half-size transporter, which was highly homologous with a human splice variant described by us previously. Quantitative RT (reverse transcription)-PCR demonstrated that the rAbca5 splice variant was expressed in numerous tissues (including testis, brain and lungs), its cDNA amounting to 2.6-11.2% of total rAbca5 cDNA. Transfection of individual rAbca5-EGFP, rAbca5 splice variant-EGFP or transporter-V5 expression plasmids along with organelle marker plasmids into HEK-293 cells (human embryonic kidney 293 cells) revealed that both rAbca5 and splice variant fusion proteins co-localized with marker protein for the Golgi apparatus. Expression of rAbca5 mRNA in Leydig cells, intracellular localization of rAbca5-EGFP/rAbca5-V5 and involvement of rAbca5-related proteins in lipid transport suggest that rAbca5 may participate in intracellular sterol/steroid trafficking.
The clarification of subcellular localization represents an important basis toward characterization of ATP-binding cassette (ABC) transporters and resolution of their roles in cellular physiology. Rat Abcb6 (rAbcb6) is a membrane-situated half-transporter belonging to the ABC protein superfamily. To investigate rAbcb6 subcellular distribution, the human colon adenocarcinoma line LoVo, which we found to be devoid of endogenous human ABCB6 mRNA, was employed for heterologous expression of rAbcb6 bearing a COOH-terminal epitope tag (rAbcb6-V5). Following subcellular fractionation, rAbcb6-V5 was observed as an N-glycosylated protein in fractions enriched with lysosomal/endosomal membrane proteins. Indirect immunofluorescence analyses of rAbcb6-V5 using antibodies against a rAbcb6-specific peptide or against the V5-tag revealed a punctate pattern that was colocalized with lysosome-associated membrane protein 1 (LAMP1), a marker of lysosomes/late endosomes. Substantial colocalization of tagged rAbcb6 with lysosomal/late endosomal marker was confirmed with living, unfixed LoVo cells coexpressing rAbcb6 fused to enhanced green fluorescent protein. Vesicular distribution in LoVo cells was consistent with localization of endogenous rAbcb6 expressed in rat primary hepatocyte cultures or in liver sections, as revealed by overlap of rat Lamp1 with rAbcb6 in double immunofluorescence analyses. Since several Abcb6-related half-transporters confer heavy metal tolerance, we investigated whether rAbcb6 expression in LoVo cells might affect sensitivity toward transition metal toxicity. Applying MTT viability assays, we found that expression of either rAbcb6-V5 or untagged rAbcb6 conferred tolerance toward copper, but not to cobalt or zinc. In summary, these results demonstrate that rAbcb6 is a glycosylated protein targeted to intracellular vesicular membranes and suggest involvement of rAbcb6 in transition metal homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.